forked from aws/aws-sdk-go-v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
interface.go
135 lines (100 loc) · 6.15 KB
/
interface.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Code generated by private/model/cli/gen-api/main.go. DO NOT EDIT.
// Package machinelearningiface provides an interface to enable mocking the Amazon Machine Learning service client
// for testing your code.
//
// It is important to note that this interface will have breaking changes
// when the service model is updated and adds new API operations, paginators,
// and waiters.
package machinelearningiface
import (
"github.com/aws/aws-sdk-go-v2/aws"
"github.com/aws/aws-sdk-go-v2/service/machinelearning"
)
// MachineLearningAPI provides an interface to enable mocking the
// machinelearning.MachineLearning service client's API operation,
// paginators, and waiters. This make unit testing your code that calls out
// to the SDK's service client's calls easier.
//
// The best way to use this interface is so the SDK's service client's calls
// can be stubbed out for unit testing your code with the SDK without needing
// to inject custom request handlers into the SDK's request pipeline.
//
// // myFunc uses an SDK service client to make a request to
// // Amazon Machine Learning.
// func myFunc(svc machinelearningiface.MachineLearningAPI) bool {
// // Make svc.AddTags request
// }
//
// func main() {
// cfg, err := external.LoadDefaultAWSConfig()
// if err != nil {
// panic("failed to load config, " + err.Error())
// }
//
// svc := machinelearning.New(cfg)
//
// myFunc(svc)
// }
//
// In your _test.go file:
//
// // Define a mock struct to be used in your unit tests of myFunc.
// type mockMachineLearningClient struct {
// machinelearningiface.MachineLearningAPI
// }
// func (m *mockMachineLearningClient) AddTags(input *machinelearning.AddTagsInput) (*machinelearning.AddTagsOutput, error) {
// // mock response/functionality
// }
//
// func TestMyFunc(t *testing.T) {
// // Setup Test
// mockSvc := &mockMachineLearningClient{}
//
// myfunc(mockSvc)
//
// // Verify myFunc's functionality
// }
//
// It is important to note that this interface will have breaking changes
// when the service model is updated and adds new API operations, paginators,
// and waiters. Its suggested to use the pattern above for testing, or using
// tooling to generate mocks to satisfy the interfaces.
type MachineLearningAPI interface {
AddTagsRequest(*machinelearning.AddTagsInput) machinelearning.AddTagsRequest
CreateBatchPredictionRequest(*machinelearning.CreateBatchPredictionInput) machinelearning.CreateBatchPredictionRequest
CreateDataSourceFromRDSRequest(*machinelearning.CreateDataSourceFromRDSInput) machinelearning.CreateDataSourceFromRDSRequest
CreateDataSourceFromRedshiftRequest(*machinelearning.CreateDataSourceFromRedshiftInput) machinelearning.CreateDataSourceFromRedshiftRequest
CreateDataSourceFromS3Request(*machinelearning.CreateDataSourceFromS3Input) machinelearning.CreateDataSourceFromS3Request
CreateEvaluationRequest(*machinelearning.CreateEvaluationInput) machinelearning.CreateEvaluationRequest
CreateMLModelRequest(*machinelearning.CreateMLModelInput) machinelearning.CreateMLModelRequest
CreateRealtimeEndpointRequest(*machinelearning.CreateRealtimeEndpointInput) machinelearning.CreateRealtimeEndpointRequest
DeleteBatchPredictionRequest(*machinelearning.DeleteBatchPredictionInput) machinelearning.DeleteBatchPredictionRequest
DeleteDataSourceRequest(*machinelearning.DeleteDataSourceInput) machinelearning.DeleteDataSourceRequest
DeleteEvaluationRequest(*machinelearning.DeleteEvaluationInput) machinelearning.DeleteEvaluationRequest
DeleteMLModelRequest(*machinelearning.DeleteMLModelInput) machinelearning.DeleteMLModelRequest
DeleteRealtimeEndpointRequest(*machinelearning.DeleteRealtimeEndpointInput) machinelearning.DeleteRealtimeEndpointRequest
DeleteTagsRequest(*machinelearning.DeleteTagsInput) machinelearning.DeleteTagsRequest
DescribeBatchPredictionsRequest(*machinelearning.DescribeBatchPredictionsInput) machinelearning.DescribeBatchPredictionsRequest
DescribeDataSourcesRequest(*machinelearning.DescribeDataSourcesInput) machinelearning.DescribeDataSourcesRequest
DescribeEvaluationsRequest(*machinelearning.DescribeEvaluationsInput) machinelearning.DescribeEvaluationsRequest
DescribeMLModelsRequest(*machinelearning.DescribeMLModelsInput) machinelearning.DescribeMLModelsRequest
DescribeTagsRequest(*machinelearning.DescribeTagsInput) machinelearning.DescribeTagsRequest
GetBatchPredictionRequest(*machinelearning.GetBatchPredictionInput) machinelearning.GetBatchPredictionRequest
GetDataSourceRequest(*machinelearning.GetDataSourceInput) machinelearning.GetDataSourceRequest
GetEvaluationRequest(*machinelearning.GetEvaluationInput) machinelearning.GetEvaluationRequest
GetMLModelRequest(*machinelearning.GetMLModelInput) machinelearning.GetMLModelRequest
PredictRequest(*machinelearning.PredictInput) machinelearning.PredictRequest
UpdateBatchPredictionRequest(*machinelearning.UpdateBatchPredictionInput) machinelearning.UpdateBatchPredictionRequest
UpdateDataSourceRequest(*machinelearning.UpdateDataSourceInput) machinelearning.UpdateDataSourceRequest
UpdateEvaluationRequest(*machinelearning.UpdateEvaluationInput) machinelearning.UpdateEvaluationRequest
UpdateMLModelRequest(*machinelearning.UpdateMLModelInput) machinelearning.UpdateMLModelRequest
WaitUntilBatchPredictionAvailable(*machinelearning.DescribeBatchPredictionsInput) error
WaitUntilBatchPredictionAvailableWithContext(aws.Context, *machinelearning.DescribeBatchPredictionsInput, ...aws.WaiterOption) error
WaitUntilDataSourceAvailable(*machinelearning.DescribeDataSourcesInput) error
WaitUntilDataSourceAvailableWithContext(aws.Context, *machinelearning.DescribeDataSourcesInput, ...aws.WaiterOption) error
WaitUntilEvaluationAvailable(*machinelearning.DescribeEvaluationsInput) error
WaitUntilEvaluationAvailableWithContext(aws.Context, *machinelearning.DescribeEvaluationsInput, ...aws.WaiterOption) error
WaitUntilMLModelAvailable(*machinelearning.DescribeMLModelsInput) error
WaitUntilMLModelAvailableWithContext(aws.Context, *machinelearning.DescribeMLModelsInput, ...aws.WaiterOption) error
}
var _ MachineLearningAPI = (*machinelearning.MachineLearning)(nil)