We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
This example data did not do well using the standard options for the plate scoring function in the multi_plate_wrapper.
samples <- tibble::tribble( ~OriginalSampleID, ~StudyID, ~Diagnosis, ~SeverityGroup, ~Status, ~Gender, ~Age, 1L, "S4", "Disease", "Severe", "high", "Male", 91, 2L, "S4", "Disease", "MildModerate", "normal", "Female", 80, 3L, "S4", "Disease", "MildModerate", "normal", "Male", 82, 4L, "S4", "Disease", "MildModerate", "normal", "Female", 66, 5L, "S4", "Disease", "MildModerate", "normal", "Male", 89, 6L, "S4", "Disease", "Severe", "normal", "Male", 64, 7L, "S4", "Disease", "Severe", "normal", "Male", 61, 8L, "S4", "Disease", "MildModerate", "normal", "Female", 77, 9L, "S4", "Disease", "Severe", "high", "Male", 86, 10L, "S4", "Disease", "MildModerate", "normal", "Male", 65, 11L, "S4", "Disease", "MildModerate", "normal", "Male", 73, 12L, "S4", "Disease", "MildModerate", "normal", "Male", 72, 13L, "S4", "Disease", "MildModerate", "normal", "Male", 76, 14L, "S4", "Disease", "MildModerate", "normal", "Male", 62, 15L, "S4", "Disease", "MildModerate", "normal", "Female", 78, 16L, "S4", "Control", "Control", "normal", "Female", 70, 17L, "S4", "Control", "Control", "normal", "Male", 75, 18L, "S4", "Control", "Control", "normal", "Female", 75, 19L, "S4", "Control", "Control", "normal", "Female", 73, 20L, "S4", "Control", "Control", "normal", "Female", 75, 21L, "S4", "Control", "Control", "normal", "Male", 57, 22L, "S4", "Control", "Control", "normal", "Female", 69, 23L, "S4", "Control", "Control", "normal", "Female", 74, 24L, "S4", "Control", "Control", "normal", "Female", 72, 25L, "S4", "Control", "Control", "normal", "Male", 63, 26L, "S4", "Control", "Control", "normal", "Male", 55, 27L, "S4", "Control", "Control", "normal", "Female", 55, 28L, "S4", "Control", "Control", "normal", "Female", 63, 29L, "S4", "Control", "Control", "normal", "Female", 66, 30L, "S3", "Control", "Control", "high", "Female", 48, 31L, "S3", "Control", "Control", "high", "Male", 63, 32L, "S2", "Control", "Control", "high", "Female", 67, 33L, "S2", "Control", "Control", "high", "Female", 82, 34L, "S2", "Control", "Control", "high", "Female", 81, 35L, "S1", "Control", "Control", "high", "Male", 72, 36L, "S1", "Control", "Control", "high", "Female", 63, 37L, "S2", "Control", "Control", "normal", "Female", 79, 38L, "S2", "Control", "Control", "normal", "Male", 72, 39L, "S2", "Control", "Control", "normal", "Male", 66, 40L, "S2", "Control", "Control", "normal", "Female", 77, 41L, "S2", "Control", "Control", "normal", "Male", 62, 42L, "S2", "Control", "Control", "normal", "Male", 81, 43L, "S2", "Control", "Control", "normal", "Male", 75, 44L, "S3", "Disease", "MildModerate", "normal", "Female", 47, 45L, "S3", "Disease", "MildModerate", "normal", "Male", 55, 46L, "S2", "Disease", "MildModerate", "normal", "Male", 75, 47L, "S2", "Disease", "MildModerate", "normal", "Female", 87, 48L, "S2", "Disease", "MildModerate", "normal", "Female", 53, 49L, "S2", "Disease", "MildModerate", "normal", "Female", 71, 50L, "S2", "Disease", "MildModerate", "normal", "Female", 78, 51L, "S2", "Disease", "MildModerate", "normal", "Female", 76, 52L, "S2", "Disease", "MildModerate", "normal", "Male", 73, 53L, "S2", "Disease", "MildModerate", "normal", "Female", 65, 54L, "S3", "Disease", "MildModerate", "high", "Female", 52, 55L, "S3", "Disease", "MildModerate", "high", "Male", 45, 56L, "S3", "Disease", "MildModerate", "high", "Male", 48, 57L, "S3", "Disease", "MildModerate", "high", "Male", 47, 58L, "S2", "Disease", "MildModerate", "high", "Female", 75, 59L, "S2", "Disease", "MildModerate", "high", "Male", 63, 60L, "S2", "Disease", "MildModerate", "high", "Male", 62, 61L, "S2", "Disease", "MildModerate", "high", "Female", 77, 62L, "S1", "Disease", "MildModerate", "high", "Female", 69, 63L, "S1", "Disease", "MildModerate", "high", "Male", 83, 64L, "S1", "Disease", "MildModerate", "high", "Female", 67, 65L, "S3", "Disease", "Severe", "normal", "Female", 56, 66L, "S3", "Disease", "Severe", "normal", "Male", 54, 67L, "S3", "Disease", "Severe", "normal", "Male", 50, 68L, "S2", "Disease", "Severe", "high", "Female", 74, 69L, "S2", "Disease", "Severe", "normal", "Male", 70, 70L, "S2", "Disease", "Severe", "normal", "Female", 75, 71L, "S2", "Disease", "Severe", "normal", "Male", 78, 72L, "S2", "Disease", "Severe", "normal", "Female", 57, 73L, "S2", "Disease", "Severe", "normal", "Male", 70, 74L, "S2", "Disease", "Severe", "normal", "Male", 72, 75L, "S2", "Disease", "Severe", "normal", "Female", 76, 76L, "S2", "Disease", "Severe", "high", "Male", 76, 77L, "S2", "Disease", "Severe", "high", "Male", 86, 78L, "S2", "Disease", "Severe", "high", "Male", 74, 79L, "S2", "Disease", "Severe", "high", "Male", 59, 80L, "S2", "Disease", "Severe", "high", "Female", 73, 81L, "S3", "Disease", "Severe", "high", "Male", 65, 82L, "S3", "Disease", "Severe", "high", "Female", 66, 83L, "S2", "Disease", "Severe", "high", "Female", 53, 84L, "S2", "Disease", "Severe", "high", "Male", 73, 85L, "S1", "Disease", "Severe", "high", "Female", 57, 86L, "S1", "Disease", "Severe", "high", "Male", 77 ) bc <- BatchContainer$new( dimensions = list( "plate" = 1, "row" = 8, "column" = 11 ) ) assign_random(bc, samples) # set scoring function for each balance variable scoring_funcs <- purrr::map( params$balance_variables, ~ mk_plate_scoring_functions(bc, row = "row", column = "column", group = .x, p = 2, penalize_lines = "soft") ) %>% unlist() names(scoring_funcs) <- params$balance_variables bc$scoring_f <- scoring_funcs traces <- optimize_design( bc, max_iter = 5000, quiet = TRUE, # not actually needed... since here is only one plate shuffle_proposal_func = mk_subgroup_shuffling_function( subgroup_vars = "plate", restrain_on_subgroup_levels = 1 ), acceptance_func = accept_leftmost_improvement )
Changing the mk_plate_scoring_functions options p = 1, penalize_lines = "none" works a lot better.
p = 1, penalize_lines = "none"
The text was updated successfully, but these errors were encountered:
No branches or pull requests
This example data did not do well using the standard options for the plate scoring function in the multi_plate_wrapper.
Changing the mk_plate_scoring_functions options
p = 1, penalize_lines = "none"
works a lot better.The text was updated successfully, but these errors were encountered: