Skip to content

Commit

Permalink
Merge d782942 into 690a765
Browse files Browse the repository at this point in the history
  • Loading branch information
erikbern authored Mar 16, 2018
2 parents 690a765 + d782942 commit 450a2e9
Show file tree
Hide file tree
Showing 2 changed files with 33 additions and 20 deletions.
48 changes: 28 additions & 20 deletions convoys/regression.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import numpy # TODO: remove
from scipy.special import expit, gammainc # TODO: remove
from scipy.special import expit, gamma, gammainc # TODO: remove
import scipy.stats
import tensorflow as tf
import sys
Expand Down Expand Up @@ -91,14 +91,10 @@ def _predict(func_values, ci):
return numpy.mean(func_values, axis=axis), numpy.percentile(func_values, (1-ci)*50, axis=axis), numpy.percentile(func_values, (1+ci)*50, axis=axis)



class Regression(Model):
def __init__(self, L2_reg=1.0):
self._L2_reg = L2_reg

def predict_time(self):
pass # TODO: implement


class ExponentialRegression(Regression):
def fit(self, X, B, T):
Expand Down Expand Up @@ -130,13 +126,17 @@ def fit(self, X, B, T):

def predict(self, x, t, ci=None, n=1000):
t = _fix_t(t)
kappa = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
lambd = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
return _predict(expit(kappa) * (1 - numpy.exp(-t * numpy.exp(lambd))), ci)
x_prod_alpha = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
x_prod_beta = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(x_prod_beta) * (1 - numpy.exp(-t * numpy.exp(x_prod_alpha))), ci)

def predict_final(self, x, ci=None, n=1000):
kappa = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(kappa), ci)
x_prod_beta = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(x_prod_beta), ci)

def predict_time(self, x, ci=None, n=1000):
x_prod_alpha = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
return _predict(1./numpy.exp(x_prod_alpha), ci)


class WeibullRegression(Regression):
Expand Down Expand Up @@ -173,13 +173,17 @@ def fit(self, X, B, T):

def predict(self, x, t, ci=None, n=1000):
t = _fix_t(t)
kappa = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
lambd = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
return _predict(expit(kappa) * (1 - numpy.exp(-(t * numpy.exp(lambd))**self.params['k'])), ci)
x_prod_alpha = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
x_prod_beta = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(x_prod_beta) * (1 - numpy.exp(-(t * numpy.exp(x_prod_alpha))**self.params['k'])), ci)

def predict_final(self, x, ci=None, n=1000):
kappa = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(kappa), ci)
x_prod_beta = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(x_prod_beta), ci)

def predict_time(self, x, ci=None, n=1000):
x_prod_alpha = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
return _predict(1./numpy.exp(x_prod_alpha) * gamma(1 + 1./self.params['k']), ci)


class GammaRegression(Regression):
Expand Down Expand Up @@ -216,10 +220,14 @@ def fit(self, X, B, T):

def predict(self, x, t, ci=None, n=1000):
t = _fix_t(t)
kappa = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
lambd = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
return _predict(expit(kappa) * (1 - gammainc(self.params['k'], t * numpy.exp(lambd))), ci)
x_prod_alpha = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
x_prod_beta = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(x_prod_beta) * (1 - gammainc(self.params['k'], t * numpy.exp(x_prod_alpha))), ci)

def predict_final(self, x, ci=None, n=1000):
kappa = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(kappa), ci)
x_prod_beta = _sample_hessian(x, self.params['beta'], self.params['beta_hessian'], n, ci)
return _predict(expit(x_prod_beta), ci)

def predict_time(self, x, ci=None, n=1000):
x_prod_alpha = _sample_hessian(x, self.params['alpha'], self.params['alpha_hessian'], n, ci)
return _predict(self.params['k']/numpy.exp(x_prod_alpha), ci)
5 changes: 5 additions & 0 deletions test_convoys.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import numpy
import pytest
import random
import scipy.special
import scipy.stats
matplotlib.use('Agg') # Needed for matplotlib to run in Travis
import convoys
Expand All @@ -29,6 +30,7 @@ def test_exponential_regression_model(c=0.3, lambd=0.1, n=100000):
model = convoys.regression.ExponentialRegression()
model.fit(X, B, T)
assert 0.95*c < model.predict_final([1]) < 1.05*c
assert 0.90/lambd < model.predict_time([1]) < 1.10/lambd
t = 10
d = 1 - numpy.exp(-lambd*t)
assert 0.95*c*d < model.predict([1], t) < 1.05*c*d
Expand All @@ -53,6 +55,8 @@ def test_weibull_regression_model(cs=[0.3, 0.5, 0.7], lambd=0.1, k=0.5, n=100000
for r, c in enumerate(cs):
x = [1] + [int(r == j) for j in range(len(cs))]
assert 0.95 * c < model.predict_final(x) < 1.05 * c
expected_time = 1./lambd * scipy.special.gamma(1 + 1/k)
assert 0.90*expected_time < model.predict_time(x) < 1.10*expected_time


def test_weibull_regression_model_ci(c=0.3, lambd=0.1, k=0.5, n=100000):
Expand Down Expand Up @@ -84,6 +88,7 @@ def test_gamma_regression_model(c=0.3, lambd=0.1, k=3.0, n=100000):
assert 0.95*c < model.predict_final([1]) < 1.05*c
assert 0.90*k < model.params['k'] < 1.10*k
assert 0.90*lambd < numpy.exp(model.params['alpha']) < 1.10*lambd
assert 0.90*k/lambd < model.predict_time([1]) < 1.10*k/lambd


def test_plot_cohorts(cs=[0.3, 0.5, 0.7], k=2.0, lambd=0.1, n=100000):
Expand Down

0 comments on commit 450a2e9

Please sign in to comment.