Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve change detection warning message #3071

Closed
alice-i-cecile opened this issue Nov 5, 2021 · 2 comments
Closed

Improve change detection warning message #3071

alice-i-cecile opened this issue Nov 5, 2021 · 2 comments
Labels
A-ECS Entities, components, systems, and events C-Docs An addition or correction to our documentation C-Usability A targeted quality-of-life change that makes Bevy easier to use

Comments

@alice-i-cecile
Copy link
Member

How can Bevy's documentation be improved?

WARN bevy_ecs::system::system: Too many intervening systems have run since the last time System 'doesntmatterthename' was last run; it may fail to detect changes.

This error message was actually hit by a user after they left a game running overnight.

This caused a large number of warnings, and the user was left confused.

We should:

  1. Move this warning to be in debug only.
  2. More clearly communicated that this is only relevant for Changed, Added and the .is_changed and .is_added methods.
  3. More clearly communicate that this is working as intended.
  4. State the amount of intervening systems that are needed before this will occur.
  5. Consider some cooldown between spamming the error message again for the same system.

If this is a regular occurence, we should probably swap change-detection to be opt-in / opt-out and move to a u64.

@alice-i-cecile alice-i-cecile added C-Docs An addition or correction to our documentation S-Needs-Triage This issue needs to be labelled A-ECS Entities, components, systems, and events C-Usability A targeted quality-of-life change that makes Bevy easier to use and removed S-Needs-Triage This issue needs to be labelled labels Nov 5, 2021
@cart
Copy link
Member

cart commented Nov 6, 2021

Hmm yeah we didn't include "many thousands of frames per second" in our calculations + discussions, which does seem like a bit of a miss. Default frame limiting would go a long way in preventing this. Making change detection opt-in doesn't solve the problem, it just brushes it under the rug. If we're going to provide a feature, it should probably work as expected! Moving to u64 would definitely help though. Worth doing some benchmarks / weighing the cost of the change.

bors bot pushed a commit that referenced this issue May 9, 2022
## Objective

- ~~Make absurdly long-lived changes stay detectable for even longer (without leveling up to `u64`).~~
- Give all changes a consistent maximum lifespan.
- Improve code clarity.

## Solution

- ~~Increase the frequency of `check_tick` scans to increase the oldest reliably-detectable change.~~
(Deferred until we can benchmark the cost of a scan.)
- Ignore changes older than the maximum reliably-detectable age.
- General refactoring—name the constants, use them everywhere, and update the docs.
- Update test cases to check for the specified behavior.

## Related

This PR addresses (at least partially) the concerns raised in:

- #3071
- #3082 (and associated PR #3084)

## Background

- #1471

Given the minimum interval between `check_ticks` scans, `N`, the oldest reliably-detectable change is `u32::MAX - (2 * N - 1)` (or `MAX_CHANGE_AGE`). Reducing `N` from ~530 million (current value) to something like ~2 million would extend the lifetime of changes by a billion.

| minimum `check_ticks` interval | oldest reliably-detectable change  | usable % of `u32::MAX` |
| --- | --- | --- |
| `u32::MAX / 8`  (536,870,911) | `(u32::MAX / 4) * 3` | 75.0% |
| `2_000_000` | `u32::MAX - 3_999_999` | 99.9% |

Similarly, changes are still allowed to be between `MAX_CHANGE_AGE`-old and `u32::MAX`-old in the interim between `check_tick` scans. While we prevent their age from overflowing, the test to detect changes still compares raw values. This makes failure ultimately unreliable, since when ancient changes stop being detected varies depending on when the next scan occurs.

## Open Question

Currently, systems and system states are incorrectly initialized with their `last_change_tick` set to `0`, which doesn't handle wraparound correctly.

For consistent behavior, they should either be initialized to the world's `last_change_tick` (and detect no changes) or to `MAX_CHANGE_AGE` behind the world's current `change_tick` (and detect everything as a change). I've currently gone with the latter since that was closer to the existing behavior.

## Follow-up Work

(Edited: entire section)

We haven't actually profiled how long a `check_ticks` scan takes on a "large" `World` , so we don't know if it's safe to increase their frequency. However, we are currently relying on play sessions not lasting long enough to trigger a scan and apps not having enough entities/archetypes for it to be "expensive" (our assumption). That isn't a real solution. (Either scanning never costs enough to impact frame times or we provide an option to use `u64` change ticks. Nobody will accept random hiccups.)

To further extend the lifetime of changes, we actually only need to increment the world tick if a system has `Fetch: !ReadOnlySystemParamFetch`. The behavior will be identical because all writes are sequenced, but I'm not sure how to implement that in a way that the compiler can optimize the branch out.

Also, since having no false positives depends on a `check_ticks` scan running at least every `2 * N - 1` ticks, a `last_check_tick` should also be stored in the `World` so that any lull in system execution (like a command flush) could trigger a scan if needed. To be completely robust, all the systems initialized on the world should be scanned, not just those in the current stage.
bors bot pushed a commit that referenced this issue May 9, 2022
## Objective

- ~~Make absurdly long-lived changes stay detectable for even longer (without leveling up to `u64`).~~
- Give all changes a consistent maximum lifespan.
- Improve code clarity.

## Solution

- ~~Increase the frequency of `check_tick` scans to increase the oldest reliably-detectable change.~~
(Deferred until we can benchmark the cost of a scan.)
- Ignore changes older than the maximum reliably-detectable age.
- General refactoring—name the constants, use them everywhere, and update the docs.
- Update test cases to check for the specified behavior.

## Related

This PR addresses (at least partially) the concerns raised in:

- #3071
- #3082 (and associated PR #3084)

## Background

- #1471

Given the minimum interval between `check_ticks` scans, `N`, the oldest reliably-detectable change is `u32::MAX - (2 * N - 1)` (or `MAX_CHANGE_AGE`). Reducing `N` from ~530 million (current value) to something like ~2 million would extend the lifetime of changes by a billion.

| minimum `check_ticks` interval | oldest reliably-detectable change  | usable % of `u32::MAX` |
| --- | --- | --- |
| `u32::MAX / 8`  (536,870,911) | `(u32::MAX / 4) * 3` | 75.0% |
| `2_000_000` | `u32::MAX - 3_999_999` | 99.9% |

Similarly, changes are still allowed to be between `MAX_CHANGE_AGE`-old and `u32::MAX`-old in the interim between `check_tick` scans. While we prevent their age from overflowing, the test to detect changes still compares raw values. This makes failure ultimately unreliable, since when ancient changes stop being detected varies depending on when the next scan occurs.

## Open Question

Currently, systems and system states are incorrectly initialized with their `last_change_tick` set to `0`, which doesn't handle wraparound correctly.

For consistent behavior, they should either be initialized to the world's `last_change_tick` (and detect no changes) or to `MAX_CHANGE_AGE` behind the world's current `change_tick` (and detect everything as a change). I've currently gone with the latter since that was closer to the existing behavior.

## Follow-up Work

(Edited: entire section)

We haven't actually profiled how long a `check_ticks` scan takes on a "large" `World` , so we don't know if it's safe to increase their frequency. However, we are currently relying on play sessions not lasting long enough to trigger a scan and apps not having enough entities/archetypes for it to be "expensive" (our assumption). That isn't a real solution. (Either scanning never costs enough to impact frame times or we provide an option to use `u64` change ticks. Nobody will accept random hiccups.)

To further extend the lifetime of changes, we actually only need to increment the world tick if a system has `Fetch: !ReadOnlySystemParamFetch`. The behavior will be identical because all writes are sequenced, but I'm not sure how to implement that in a way that the compiler can optimize the branch out.

Also, since having no false positives depends on a `check_ticks` scan running at least every `2 * N - 1` ticks, a `last_check_tick` should also be stored in the `World` so that any lull in system execution (like a command flush) could trigger a scan if needed. To be completely robust, all the systems initialized on the world should be scanned, not just those in the current stage.
robtfm pushed a commit to robtfm/bevy that referenced this issue May 10, 2022
## Objective

- ~~Make absurdly long-lived changes stay detectable for even longer (without leveling up to `u64`).~~
- Give all changes a consistent maximum lifespan.
- Improve code clarity.

## Solution

- ~~Increase the frequency of `check_tick` scans to increase the oldest reliably-detectable change.~~
(Deferred until we can benchmark the cost of a scan.)
- Ignore changes older than the maximum reliably-detectable age.
- General refactoring—name the constants, use them everywhere, and update the docs.
- Update test cases to check for the specified behavior.

## Related

This PR addresses (at least partially) the concerns raised in:

- bevyengine#3071
- bevyengine#3082 (and associated PR bevyengine#3084)

## Background

- bevyengine#1471

Given the minimum interval between `check_ticks` scans, `N`, the oldest reliably-detectable change is `u32::MAX - (2 * N - 1)` (or `MAX_CHANGE_AGE`). Reducing `N` from ~530 million (current value) to something like ~2 million would extend the lifetime of changes by a billion.

| minimum `check_ticks` interval | oldest reliably-detectable change  | usable % of `u32::MAX` |
| --- | --- | --- |
| `u32::MAX / 8`  (536,870,911) | `(u32::MAX / 4) * 3` | 75.0% |
| `2_000_000` | `u32::MAX - 3_999_999` | 99.9% |

Similarly, changes are still allowed to be between `MAX_CHANGE_AGE`-old and `u32::MAX`-old in the interim between `check_tick` scans. While we prevent their age from overflowing, the test to detect changes still compares raw values. This makes failure ultimately unreliable, since when ancient changes stop being detected varies depending on when the next scan occurs.

## Open Question

Currently, systems and system states are incorrectly initialized with their `last_change_tick` set to `0`, which doesn't handle wraparound correctly.

For consistent behavior, they should either be initialized to the world's `last_change_tick` (and detect no changes) or to `MAX_CHANGE_AGE` behind the world's current `change_tick` (and detect everything as a change). I've currently gone with the latter since that was closer to the existing behavior.

## Follow-up Work

(Edited: entire section)

We haven't actually profiled how long a `check_ticks` scan takes on a "large" `World` , so we don't know if it's safe to increase their frequency. However, we are currently relying on play sessions not lasting long enough to trigger a scan and apps not having enough entities/archetypes for it to be "expensive" (our assumption). That isn't a real solution. (Either scanning never costs enough to impact frame times or we provide an option to use `u64` change ticks. Nobody will accept random hiccups.)

To further extend the lifetime of changes, we actually only need to increment the world tick if a system has `Fetch: !ReadOnlySystemParamFetch`. The behavior will be identical because all writes are sequenced, but I'm not sure how to implement that in a way that the compiler can optimize the branch out.

Also, since having no false positives depends on a `check_ticks` scan running at least every `2 * N - 1` ticks, a `last_check_tick` should also be stored in the `World` so that any lull in system execution (like a command flush) could trigger a scan if needed. To be completely robust, all the systems initialized on the world should be scanned, not just those in the current stage.
exjam pushed a commit to exjam/bevy that referenced this issue May 22, 2022
## Objective

- ~~Make absurdly long-lived changes stay detectable for even longer (without leveling up to `u64`).~~
- Give all changes a consistent maximum lifespan.
- Improve code clarity.

## Solution

- ~~Increase the frequency of `check_tick` scans to increase the oldest reliably-detectable change.~~
(Deferred until we can benchmark the cost of a scan.)
- Ignore changes older than the maximum reliably-detectable age.
- General refactoring—name the constants, use them everywhere, and update the docs.
- Update test cases to check for the specified behavior.

## Related

This PR addresses (at least partially) the concerns raised in:

- bevyengine#3071
- bevyengine#3082 (and associated PR bevyengine#3084)

## Background

- bevyengine#1471

Given the minimum interval between `check_ticks` scans, `N`, the oldest reliably-detectable change is `u32::MAX - (2 * N - 1)` (or `MAX_CHANGE_AGE`). Reducing `N` from ~530 million (current value) to something like ~2 million would extend the lifetime of changes by a billion.

| minimum `check_ticks` interval | oldest reliably-detectable change  | usable % of `u32::MAX` |
| --- | --- | --- |
| `u32::MAX / 8`  (536,870,911) | `(u32::MAX / 4) * 3` | 75.0% |
| `2_000_000` | `u32::MAX - 3_999_999` | 99.9% |

Similarly, changes are still allowed to be between `MAX_CHANGE_AGE`-old and `u32::MAX`-old in the interim between `check_tick` scans. While we prevent their age from overflowing, the test to detect changes still compares raw values. This makes failure ultimately unreliable, since when ancient changes stop being detected varies depending on when the next scan occurs.

## Open Question

Currently, systems and system states are incorrectly initialized with their `last_change_tick` set to `0`, which doesn't handle wraparound correctly.

For consistent behavior, they should either be initialized to the world's `last_change_tick` (and detect no changes) or to `MAX_CHANGE_AGE` behind the world's current `change_tick` (and detect everything as a change). I've currently gone with the latter since that was closer to the existing behavior.

## Follow-up Work

(Edited: entire section)

We haven't actually profiled how long a `check_ticks` scan takes on a "large" `World` , so we don't know if it's safe to increase their frequency. However, we are currently relying on play sessions not lasting long enough to trigger a scan and apps not having enough entities/archetypes for it to be "expensive" (our assumption). That isn't a real solution. (Either scanning never costs enough to impact frame times or we provide an option to use `u64` change ticks. Nobody will accept random hiccups.)

To further extend the lifetime of changes, we actually only need to increment the world tick if a system has `Fetch: !ReadOnlySystemParamFetch`. The behavior will be identical because all writes are sequenced, but I'm not sure how to implement that in a way that the compiler can optimize the branch out.

Also, since having no false positives depends on a `check_ticks` scan running at least every `2 * N - 1` ticks, a `last_check_tick` should also be stored in the `World` so that any lull in system execution (like a command flush) could trigger a scan if needed. To be completely robust, all the systems initialized on the world should be scanned, not just those in the current stage.
@alice-i-cecile
Copy link
Member Author

This is basically fixed.

ItsDoot pushed a commit to ItsDoot/bevy that referenced this issue Feb 1, 2023
## Objective

- ~~Make absurdly long-lived changes stay detectable for even longer (without leveling up to `u64`).~~
- Give all changes a consistent maximum lifespan.
- Improve code clarity.

## Solution

- ~~Increase the frequency of `check_tick` scans to increase the oldest reliably-detectable change.~~
(Deferred until we can benchmark the cost of a scan.)
- Ignore changes older than the maximum reliably-detectable age.
- General refactoring—name the constants, use them everywhere, and update the docs.
- Update test cases to check for the specified behavior.

## Related

This PR addresses (at least partially) the concerns raised in:

- bevyengine#3071
- bevyengine#3082 (and associated PR bevyengine#3084)

## Background

- bevyengine#1471

Given the minimum interval between `check_ticks` scans, `N`, the oldest reliably-detectable change is `u32::MAX - (2 * N - 1)` (or `MAX_CHANGE_AGE`). Reducing `N` from ~530 million (current value) to something like ~2 million would extend the lifetime of changes by a billion.

| minimum `check_ticks` interval | oldest reliably-detectable change  | usable % of `u32::MAX` |
| --- | --- | --- |
| `u32::MAX / 8`  (536,870,911) | `(u32::MAX / 4) * 3` | 75.0% |
| `2_000_000` | `u32::MAX - 3_999_999` | 99.9% |

Similarly, changes are still allowed to be between `MAX_CHANGE_AGE`-old and `u32::MAX`-old in the interim between `check_tick` scans. While we prevent their age from overflowing, the test to detect changes still compares raw values. This makes failure ultimately unreliable, since when ancient changes stop being detected varies depending on when the next scan occurs.

## Open Question

Currently, systems and system states are incorrectly initialized with their `last_change_tick` set to `0`, which doesn't handle wraparound correctly.

For consistent behavior, they should either be initialized to the world's `last_change_tick` (and detect no changes) or to `MAX_CHANGE_AGE` behind the world's current `change_tick` (and detect everything as a change). I've currently gone with the latter since that was closer to the existing behavior.

## Follow-up Work

(Edited: entire section)

We haven't actually profiled how long a `check_ticks` scan takes on a "large" `World` , so we don't know if it's safe to increase their frequency. However, we are currently relying on play sessions not lasting long enough to trigger a scan and apps not having enough entities/archetypes for it to be "expensive" (our assumption). That isn't a real solution. (Either scanning never costs enough to impact frame times or we provide an option to use `u64` change ticks. Nobody will accept random hiccups.)

To further extend the lifetime of changes, we actually only need to increment the world tick if a system has `Fetch: !ReadOnlySystemParamFetch`. The behavior will be identical because all writes are sequenced, but I'm not sure how to implement that in a way that the compiler can optimize the branch out.

Also, since having no false positives depends on a `check_ticks` scan running at least every `2 * N - 1` ticks, a `last_check_tick` should also be stored in the `World` so that any lull in system execution (like a command flush) could trigger a scan if needed. To be completely robust, all the systems initialized on the world should be scanned, not just those in the current stage.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-ECS Entities, components, systems, and events C-Docs An addition or correction to our documentation C-Usability A targeted quality-of-life change that makes Bevy easier to use
Projects
None yet
Development

No branches or pull requests

2 participants