Skip to content

biboamy/music-repro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Music Genre Classification with Reprogramming

PyTorch

Paper Link

  • Low-Resource Music Genre Classification with Advanced Neural Model Reprogramming.
  • Yun-Ning Hung, Chao-Han Huck Yang, Pin-Yu Chen, and Alexander Lerch

Codebase

  1. Download GTZAN dataset: https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification?resource=download

  2. unzip and move file:

unzip archive.zip
mv Data/genres_original/* music-repro/data/
  1. Install Dependencies
pip3 install -r requirement.txt
  1. Pull pre-trained models
git lfs fetch --all
  1. run experiment (skip to "7" for inference only)
python3 main.py --reprog_front uni_noise

python3 main.py --reprog_front condi

python3 main.py --reprog_front skip
  1. Visit "demo.ipynb" for inference only demo

AST Reference

@inproceedings{gong21b_interspeech,
  author={Yuan Gong and Yu-An Chung and James Glass},
  title={{AST: Audio Spectrogram Transformer}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
  pages={571--575},
  doi={10.21437/Interspeech.2021-698}
}

The ast code used in this repo comes from the original repo

Citing Music Reprogramming

@inproceedings{hung2023low,
  title={Low-Resource Music Genre Classification with Cross-Modal Neural Model Reprogramming},
  author={Hung, Yun-Ning and Yang, Chao-Han Huck and Chen, Pin-Yu and Lerch, Alexander},
  booktitle={Proc. of ICASSP 2023},
  pages={1--5},
  year={2023},
  organization={IEEE}
}

Bug Fix

If you encounter the following errors "batch response: This repository is over its data quota. Account responsible for LFS...", Please download the model from here Google Drive

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published