Skip to content

bioc/MethReg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MethReg

codecov license

MethReg can be used to generate testable hypothesis on the synergistic interaction of DMRs and TFs in gene regulation.

MethReg can be used either to evaluate regulatory potentials of candidate regions or to search for methylation coupled TF regulatory processes in the entire genome.

Installation

You can install the MethReg from Bioconductor with:

BiocManager::install("MethReg")

Example

This is a basic example which shows you how to use the package:

library(MethReg)
#---------------------------------------
# Data input
#---------------------------------------
# 1) Gene expression matrix
# 2) DNA methylation
# With same column names
data("dna.met.chr21")
data("gene.exp.chr21.log2")
all(colnames(dna.met.chr21) == colnames(gene.exp.chr21.log2))
#> [1] TRUE

# Since we are working with regions we need to map our 450k array to regions
dna.met.chr21 <- make_dnam_se(dna.met.chr21)
#---------------------------------------
# Mapping regions
#---------------------------------------
# For each region get target gene and predicted TF biding to the regions
# get_triplet incorporates two other functions:
# 1) get_region_target_gene
# 2) get_tf_in_region
triplet <- create_triplet_distance_based(
    region = rownames(dna.met.chr21),
    motif.search.window.size = 50,
    motif.search.p.cutoff = 10^-3,
    target.method = "genes.promoter.overlap",
    genome = "hg19",
    cores = 1
)
#> Finding target genes
#> Mapping regions to the closest gene
#> Looking for TFBS
#> 
#> 
#> Attaching package: 'S4Vectors'
#> The following object is masked from 'package:base':
#> 
#>     expand.grid
#> 
#> Attaching package: 'Biostrings'
#> The following object is masked from 'package:base':
#> 
#>     strsplit
#> Joining, by = "regionID"
#---------------------------------------
# Evaluate two models: 
#---------------------------------------
# 1) target gene ~ TF + DNAm + TF * DNAm
# 2) target gene ~ TF + DNAm_group + TF * DNAm_group 
# where DNAm_group is a binary indicator if the sample belongs to: Q4 or Q1
results <- interaction_model(
    triplet = triplet, 
    dnam = dna.met.chr21,
    exp = gene.exp.chr21.log2
)
head(results)
#>                  regionID target_gene_name          target
#> 1 chr21:30372219-30372220          RPL23P2 ENSG00000176054
#> 2 chr21:30430511-30430512       AF129075.5 ENSG00000231125
#> 3 chr21:33109780-33109781       AP000255.6 ENSG00000273091
#> 4 chr21:40692859-40692860            BRWD1 ENSG00000185658
#> 5 chr21:43982646-43982647       AP001625.6 ENSG00000235772
#> 6 chr21:43983587-43983588       AP001625.6 ENSG00000235772
#>   TF_external_gene_name              TF TF_symbol target_symbol     met.IQR
#> 1                  ETS2 ENSG00000157557      ETS2       RPL23P2 0.182568764
#> 2                 BACH1 ENSG00000156273     BACH1    AF129075.2 0.310379208
#> 3                 GABPA ENSG00000154727     GABPA    AP000255.1 0.080160919
#> 4                 GABPA ENSG00000154727     GABPA         BRWD1 0.040638333
#> 5                 GABPA ENSG00000154727     GABPA    AP001625.2 0.008670064
#> 6                 GABPA ENSG00000154727     GABPA    AP001625.2 0.014175786
#>   quant_pval_metGrp quant_fdr_metGrp quant_pval_rna.tf quant_fdr_rna.tf
#> 1      3.953828e-05     0.0001186148      5.958024e-03     1.787407e-02
#> 2      7.437666e-01     0.7437665914      6.570509e-04     6.570509e-04
#> 3      2.208774e-03     0.0022087741      5.803942e-01     5.803942e-01
#> 4      3.823862e-01     0.3823861582      7.142112e-08     7.142112e-08
#> 5      4.434057e-01     0.4434057288      4.977765e-02     4.977765e-02
#> 6      5.619040e-01     0.9778889092      1.305771e-03     2.611541e-03
#>   quant_pval_metGrp:rna.tf quant_fdr_metGrp:rna.tf quant_estimate_metGrp
#> 1             3.768097e-05            0.0001130429            -83.041219
#> 2             7.945988e-01            0.7945988318             -3.533136
#> 3             2.305241e-03            0.0023052406            -30.858474
#> 4             4.999473e-01            0.4999473203             -3.386762
#> 5             4.663539e-01            0.4663538741            -10.643704
#> 6             5.234533e-01            0.9782246238             -5.525037
#>   quant_estimate_rna.tf quant_estimate_metGrp:rna.tf      Model.quantile
#> 1            -2.0395999                    3.8764266 Robust Linear Model
#> 2             1.3437155                    0.1642009 Robust Linear Model
#> 3             0.2627746                    1.8528803 Robust Linear Model
#> 4             1.3876278                    0.1522536 Robust Linear Model
#> 5             1.1156152                    0.5884195 Robust Linear Model
#> 6             1.2125286                    0.3594288 Robust Linear Model
#>   Wilcoxon_pval_target_q4met_vs_q1met Wilcoxon_pval_tf_q4met_vs_q1met
#> 1                          0.42735531                       0.5707504
#> 2                          0.47267559                       0.4726756
#> 3                          0.49466484                       0.9097219
#> 4                          0.03763531                       0.7913368
#> 5                          0.44952133                       0.2730363
#> 6                          1.00000000                       0.2730363
#>   % of 0 target genes (Q1 and Q4)
#> 1                             0 %
#> 2                             5 %
#> 3                            20 %
#> 4                             0 %
#> 5                            10 %
#> 6                             5 %

Session information

sessionInfo()
#> R version 4.0.2 (2020-06-22)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Catalina 10.15.6
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] stats4    parallel  stats     graphics  grDevices utils     datasets 
#> [8] methods   base     
#> 
#> other attached packages:
#>  [1] BSgenome.Hsapiens.UCSC.hg19_1.4.3 BSgenome_1.56.0                  
#>  [3] rtracklayer_1.48.0                Biostrings_2.56.0                
#>  [5] XVector_0.28.0                    GenomicRanges_1.40.0             
#>  [7] GenomeInfoDb_1.24.2               IRanges_2.22.2                   
#>  [9] S4Vectors_0.26.1                  sesameData_1.6.0                 
#> [11] ExperimentHub_1.15.3              AnnotationHub_2.20.2             
#> [13] BiocFileCache_1.12.1              dbplyr_1.4.4                     
#> [15] BiocGenerics_0.34.0               MethReg_0.99.11                  
#> 
#> loaded via a namespace (and not attached):
#>   [1] readxl_1.3.1                  backports_1.1.10             
#>   [3] plyr_1.8.6                    BiocParallel_1.22.0          
#>   [5] ggplot2_3.3.2                 TFBSTools_1.26.0             
#>   [7] digest_0.6.25                 foreach_1.5.0                
#>   [9] htmltools_0.5.0               GO.db_3.11.4                 
#>  [11] magrittr_1.5                  memoise_1.1.0                
#>  [13] doParallel_1.0.15             sfsmisc_1.1-7                
#>  [15] openxlsx_4.1.5                readr_1.3.1                  
#>  [17] annotate_1.66.0               matrixStats_0.56.0           
#>  [19] R.utils_2.10.1                JASPAR2020_0.99.10           
#>  [21] prettyunits_1.1.1             colorspace_1.4-1             
#>  [23] blob_1.2.1                    rappdirs_0.3.1               
#>  [25] haven_2.3.1                   xfun_0.17                    
#>  [27] dplyr_1.0.2                   crayon_1.3.4                 
#>  [29] RCurl_1.98-1.2                TFMPvalue_0.0.8              
#>  [31] iterators_1.0.12              glue_1.4.2                   
#>  [33] gtable_0.3.0                  sesame_1.6.0                 
#>  [35] zlibbioc_1.34.0               DelayedArray_0.14.1          
#>  [37] car_3.0-9                     wheatmap_0.1.0               
#>  [39] Rhdf5lib_1.10.1               HDF5Array_1.16.1             
#>  [41] abind_1.4-5                   scales_1.1.1                 
#>  [43] pscl_1.5.5                    DBI_1.1.0                    
#>  [45] rstatix_0.6.0                 Rcpp_1.0.5                   
#>  [47] xtable_1.8-4                  progress_1.2.2               
#>  [49] foreign_0.8-80                bit_4.0.4                    
#>  [51] preprocessCore_1.50.0         httr_1.4.2                   
#>  [53] RColorBrewer_1.1-2            ellipsis_0.3.1               
#>  [55] pkgconfig_2.0.3               XML_3.99-0.5                 
#>  [57] R.methodsS3_1.8.1             DNAcopy_1.62.0               
#>  [59] tidyselect_1.1.0              rlang_0.4.7                  
#>  [61] reshape2_1.4.4                later_1.1.0.1                
#>  [63] AnnotationDbi_1.50.3          munsell_0.5.0                
#>  [65] BiocVersion_3.11.1            cellranger_1.1.0             
#>  [67] tools_4.0.2                   DirichletMultinomial_1.30.0  
#>  [69] generics_0.0.2                RSQLite_2.2.0                
#>  [71] broom_0.7.0                   evaluate_0.14                
#>  [73] stringr_1.4.0                 fastmap_1.0.1                
#>  [75] yaml_2.2.1                    knitr_1.29                   
#>  [77] bit64_4.0.5                   zip_2.1.1                    
#>  [79] caTools_1.18.0                purrr_0.3.4                  
#>  [81] randomForest_4.6-14           KEGGREST_1.28.0              
#>  [83] mime_0.9                      R.oo_1.24.0                  
#>  [85] poweRlaw_0.70.6               pracma_2.2.9                 
#>  [87] compiler_4.0.2                curl_4.3                     
#>  [89] png_0.1-7                     interactiveDisplayBase_1.26.3
#>  [91] ggsignif_0.6.0                tibble_3.0.3                 
#>  [93] stringi_1.5.3                 forcats_0.5.0                
#>  [95] lattice_0.20-41               CNEr_1.24.0                  
#>  [97] Matrix_1.2-18                 vctrs_0.3.4                  
#>  [99] pillar_1.4.6                  lifecycle_0.2.0              
#> [101] BiocManager_1.30.10           data.table_1.13.0            
#> [103] bitops_1.0-6                  httpuv_1.5.4                 
#> [105] R6_2.4.1                      promises_1.1.1               
#> [107] rio_0.5.16                    codetools_0.2-16             
#> [109] MASS_7.3-53                   gtools_3.8.2                 
#> [111] assertthat_0.2.1              seqLogo_1.54.3               
#> [113] rhdf5_2.32.2                  SummarizedExperiment_1.18.2  
#> [115] GenomicAlignments_1.24.0      Rsamtools_2.4.0              
#> [117] GenomeInfoDbData_1.2.3        hms_0.5.3                    
#> [119] motifmatchr_1.10.0            grid_4.0.2                   
#> [121] tidyr_1.1.2                   rmarkdown_2.3                
#> [123] carData_3.0-4                 ggpubr_0.4.0                 
#> [125] Biobase_2.48.0                shiny_1.5.0

About

This is a read-only mirror of the git repos at https://bioconductor.org

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •