Skip to content

bioc/XINA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

74 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

XINA

XINA: a workflow for the integration of multiplexed proteomics kinetics data with network analysis Lang Ho Lee, Arda Halu, Stephanie Morgan, Hiroshi Iwata, Masanori Aikawa, and Sasha A. Singh Journal of Proteome Research DOI: 10.1021/acs.jproteome.8b00615

https://pubs.acs.org/doi/10.1021/acs.jproteome.8b00615

1. Introduction

Quantitative proteomics experiments, using for instance isobaric tandem mass tagging approaches, are conducive to measuring changes in protein abundance over multiple time points in response to one or more conditions or stimulations. The aim of XINA is to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with co-abundance patterns may have common molecular functions. XINA imports multiple datasets, tags dataset in silico, and combines the data for subsequent subgrouping into multiple clusters. The result is a single output depicting the variation across all conditions. XINA, not only extracts co-abundance profiles within and across experiments, but also incorporates protein-protein interaction databases and integrative resources such as KEGG to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs.

Main contribution: an easy-to-use software for non-expert users of clustering and network analyses.

Data inputs: any type of quantitative proteomics data, label or label-free

2. XINA references

https://cics.bwh.harvard.edu/software http://bioconductor.org/packages/XINA/

3. XINA installation

# Install from Bioconductor
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("XINA")

## Install from Github
install.packages("devtools")
library(devtools)
install_github("cics-bwh/XINA")

To follow this tutorial, you need these libraries. If you don't have the packages below, please install them.

library(XINA)
library(igraph)
library(ggplot2)
library(STRINGdb)

4. Example theoretical dataset

We generated an example dataset to show how XINA can be used for your research. To demonstrate XINA functions and allow users to perform similar exercises, we included a module that can generate multiplexed time-series datasets using theoretical data. This data consists of three treatment conditions, 'Control', 'Stimulus1' and 'Stimulus2'. Each condition has time series data from 0 hour to 72 hours. As an example, we chose the mTOR pathway to be differentially regulated across the three conditions.

# Generate random multiplexed time-series data
random_data_info <- make_random_xina_data()

# The number of proteins
random_data_info$size

# Time points
random_data_info$time_points

# Three conditions
random_data_info$conditions

Read and check the randomly generated data

Control <- read.csv("Control.csv", check.names=FALSE, stringsAsFactors = FALSE)
Stimulus1 <- read.csv("Stimulus1.csv", check.names=FALSE, stringsAsFactors = FALSE)
Stimulus2 <- read.csv("Stimulus2.csv", check.names=FALSE, stringsAsFactors = FALSE)

head(Control)
head(Stimulus1)
head(Stimulus2)

Since XINA needs to know which columns have the kinetics data matrix, the user should give a vector containing column names of the kinetics data matrix. These column names have to be the same in all input datasets (Control input, Stimulus1 input and Stimulus2 input).

head(Control[random_data_info$time_points])

5. Package features

XINA is an R package and can examine, but is not limited to, time-series omics data from multiple experiment conditions. It has three modules: 1. Model-based clustering analysis, 2. coregulation analysis, and 3. Protein-protein interaction network analysis (we used STRING DB for this practice).

5.1 Model-based clustering analysis

XINA implements model-based clustering to classify features (genes or proteins) depending on their expression profiles. The model-based clustering optimizes the number of clusters at minimum Bayesian information criteria (BIC). Model-based clustering is fulfilled by the 'mclust' R package [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096736/], which was used by our previously developed tool mIMT-visHTS [https://www.ncbi.nlm.nih.gov/pubmed/26232111]. By default, XINA performs sum-normalization for each gene/protein time-series profile [https://www.ncbi.nlm.nih.gov/pubmed/19861354]. This step is done to standardize all datasets. Most importantly, XINA assigns an electronic tag to each dataset's proteins (similar to TMT) in order to combine the multiple datasets (Super dataset) for subsequent clustering.

XINA uses the 'mclust' package for the model-based clustering. 'mclust' requires the fixed random seed to get reproducible clustering results.

set.seed(0)

'nClusters' is the number of desired clusters. 'mclust' will choose the most optimized number of clusters by considering the Bayesian information criteria (BIC). BIC of 'mclust' is the negative of normal BIC, thus the higher BIC, the more optimized clustering scheme in 'mclust', while lowest BIC is better in statistics.

# Data files
data_files <- paste(random_data_info$conditions, ".csv", sep='')
data_files

# time points of the data matrix
data_column <- random_data_info$time_points
data_column

Run the model-based clustering

# Run the model-based clusteirng
clustering_result <- xina_clustering(data_files, data_column=data_column, nClusters=30)

If you think the clustering cannot be optimized by the automatically selected covariance model (scored highest BIC), you can adjust the clustering results by appointing specific parameterisations of the within-condition covariance matrix.

# Model-based clustering using VVI covariance model
clustering_result_vvi <- xina_clustering(data_files, data_column=data_column, nClusters=30, chosen_model='VVI')

XINA also supports k-means clustering as well as the model-based clustering

clustering_result_km <- xina_clustering(data_files, data_column=data_column, nClusters=30, chosen_model='kmeans')

The clustering results are stored in your working directory. XINA clustering generates the mclust BIC plot containing the BIC of each covariance matrix ifor each number of clusters. 'xina_clusters.csv' has a long list of XINA cluster results. 'xina_clusters_aligned.csv' has clustering results arranged by gene name. If you want to recall previous clustering results, you can use 'load_previous_results'

clustering_result_reloaded <- load_previous_results()
head(clustering_result_reloaded$aligned)

Load previously generated dataset for upcoming XINA analyses.

data(xina_example)

For visualizing clustering results, XINA draws line graphs of the clustering results using 'plot_clusters'.

plot_clusters(example_clusters)

Clustering plot without x label.

plot_clusters(example_clusters, xylab=FALSE)

X axis information is considered as a ordinal variable in XINA's plot_clusters, but you can change it to be continuous variable.

# Convert the time points from the ordinary to the continuous variables
plot_clusters(example_clusters, xval=c(0,2,6,12,24,48,72))

# You can change x axis tick marks
plot_clusters(example_clusters, xval=c(0,2,6,12,24,48,72), xtickmark = c(0,2,6,12,24,48,72))

# You can change Y axis limits to be ranged from 0 to 0.35
plot_clusters(example_clusters, y_lim=c(0,0.35), xval=c(0,2,6,12,24,48,72), xtickmark = c(0,2,6,12,24,48,72))

If you need, you can modify the clustering plot by creating your own ggplot theme. This theme is for small font size of X axis ticks and the plot titles

theme1 <- theme(title=element_text(size=8, face='bold'),
                axis.text.x = element_text(size=7),
                axis.text.y = element_blank(),
                axis.ticks.x = element_blank(),
                axis.ticks.y = element_blank(),
                axis.title.x = element_blank(),
                axis.title.y = element_blank())
plot_clusters(example_clusters, ggplot_theme=theme1)

Tiny font size and white background

theme2 <- theme(plot.title=element_text(hjust=0, vjust=-1.5, size=5, face='bold'),
                axis.text.x = element_text(size=3.5),
                axis.text.y = element_blank(),
                axis.ticks.x = element_blank(),
                axis.ticks.y = element_blank(),
                axis.title.x = element_blank(),
                axis.title.y = element_blank(),
                panel.background = element_blank(),
                plot.margin = unit(c(0,0,0,0),"cm"))
plot_clusters(example_clusters, ggplot_theme=theme2)

XINA calculates sample condition composition, for example the sample composition in the cluster 28 is higher than 95% for Stimulus2. 'plot_condition_composition' plots these compositions as pie-charts. Sample composition information is insightful because we can find which specific patterns are closely related with each stimulus.

condition_composition <- plot_condition_compositions(example_clusters)
tail(condition_composition)

Like XINA clustering plot, you can modify the condition composition charts using ggplot2 theme This is for small font size and small legend key size

theme3 <- theme(legend.key.size = unit(0.3, "cm"),
                legend.text=element_text(size=5),
                title=element_text(size=7, face='bold'))
condition_composition <- plot_condition_compositions(example_clusters, ggplot_theme=theme3)

This is to draw the charts without the legend

theme4 <- theme(legend.position="none", title=element_text(size=7, face='bold'))
condition_composition <- plot_condition_compositions(example_clusters, ggplot_theme=theme4)

The large piechart without the legend

theme5 <- theme(legend.position="none",
                plot.title=element_text(hjust=0, vjust=-1.5, size=3, face='bold'),
                panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                panel.background = element_blank(),
                axis.text.x=element_blank(),
                plot.margin = unit(c(-.1,-.1,-.1,-.1),"cm"))
condition_composition <- plot_condition_compositions(example_clusters, ggplot_theme = theme5)

You can change colors for the conditions

# Make a new color code for conditions
condition_colors <- c("tomato","steelblue1","gold")
names(condition_colors) <- example_clusters$condition
example_clusters$color_for_condition <- condition_colors

# Draw condition composition pie-chart with the new color code
condition_composition <- plot_condition_compositions(example_clusters, ggplot_theme=theme2)

You can draw the bullseye plot.

# XINA also can draw bull's-eye plots instead of pie-charts.
condition_composition <- plot_condition_compositions(example_clusters, ggplot_theme=theme2, bullseye = TRUE)

Based on the condition composition pie-charts, we can see some of clusters are mostly coming from specific stimuli or conditions. Default threshold is 50%.

# New colors for the clustering plot based on condition composition
example_clusters$color_for_clusters <- mutate_colors(condition_composition, example_clusters$color_for_condition)
example_clusters$color_for_clusters
plot_clusters(example_clusters, xval=c(0,2,6,12,24,48,72), xylab=FALSE)

You can lower down the percentage threshold, such as 40%.

example_clusters$color_for_clusters <- mutate_colors(condition_composition, example_clusters$color_for_condition, threshold_percent=40)
plot_clusters(example_clusters, xval=c(0,2,6,12,24,48,72), xylab=FALSE)

5.2 coregulation analysis

XINA supposes that proteins that comigrate between clusters in response to a given condition are more likely to be coregulated at the biological level than other proteins within the same clusters. For this module, at least two datasets to be compared are needed. XINA supposes features assigned to the same cluster in an experiment condition as a coregulated group. XINA traces the comigrated proteins in different experiment conditions and finds signficant trends by 1) the number of member features (proteins) and 2) the enrichment test using the Fishers exact test. The comigrations are displayed via an alluvial plot. In XINA the comigration is defined as a condition of proteins that show the same expression pattern, classified and evaluated by XINA clustering, in at least two dataset conditions. If there are proteins that are assigned to the same cluster in more than two datasets, XINA considers those proteins to be comigrated. XINA's 'alluvial_enriched' is designed to find these comigrations and draws alluvial plots for visualizing the found comigrations.

classes <- as.vector(example_clusters$condition)
classes

all_cor <- alluvial_enriched(example_clusters, classes)
head(all_cor)

By changing order of sample conditions, you can change colors of streams.

all_cor_Stimulus1_start <- alluvial_enriched(example_clusters, c(classes[2],classes[1],classes[3]))
head(all_cor_Stimulus1_start)

You can narrow down comigrations by using the size (the number of comigrated proteins) filter.

cor_bigger_than_10 <- alluvial_enriched(example_clusters, classes, comigration_size=10)
head(cor_bigger_than_10)

From the size flitered comigrations, XINA provides one more filtering using the condition composition pie-charts. It is the limitation to condition-biased clusters. This enables to find coregulations related with the condition-specific patterns. XINA assumes that one expression pattern is majorly found in one speficif experimental condition, that patterns is condition-biased.

condition_biased_comigrations <- get_condition_biased_comigrations(clustering_result=example_clusters,
count_table=cor_bigger_than_10, selected_conditions=classes, condition_composition=condition_composition, threshold_percent=50, color_for_null='gray', color_for_highly_matched='yellow', cex = 1)

In the alluvial plot displaying corregulations between three conditions, Control, Stimulus1 and Stimulus2, one large comigration protein condition is evident (tan color). XINA can extract the proteins from this comigrated condition.

condition_biased_clusters <- condition_composition[condition_composition$Percent_ratio>=50,]
control_biased_clusters <- condition_biased_clusters[condition_biased_clusters$Condition=="Control",]$Cluster
Stimulus1_biased_clusters <- condition_biased_clusters[condition_biased_clusters$Condition=="Stimulus1",]$Cluster
Stimulus2_biased_clusters <- condition_biased_clusters[condition_biased_clusters$Condition=="Stimulus2",]$Cluster

# Get the proteins showing condition-specific expression patterns in three conditions
proteins_found_in_condition_biased_clusters <- subset(example_clusters$aligned, Control==control_biased_clusters[1] & Stimulus1==Stimulus1_biased_clusters[1] & Stimulus2==Stimulus2_biased_clusters[1])
nrow(proteins_found_in_condition_biased_clusters)
head(proteins_found_in_condition_biased_clusters)

If you compare only two conditions, you can apply Fishers exact test to measure how significantly any given comigration condition is with respect to all in the comparison. The following 2x2 table was used to calculate the p-value from the Fisher's exact test. To evaluate significance of comigrated proteins from cluster #1 in control to cluster #2 in a test condition,

                       | cluster 1 in control   |    other clusters in control
-----------------------|------------------------|------------------------------
cluster 2 in test      | 65 (TP)                |    175 (FP)
other clusters in test | 35 (FN)                |    1079 (TN)
Control_Stimulus1_significant <- alluvial_enriched(example_clusters, c("Control","Stimulus1"), comigration_size=5, pval_threshold=0.05)
head(Control_Stimulus1_significant)

5.3 Network analysis

XINA conducts protein-protein interaction (PPI) network analysis through implementing 'igraph' and 'STRINGdb' R packages. XINA constructs PPI networks for comigrated protein groups as well as individual clusters of a specific experiment (dataset) condition. In the constructed networks, XINA finds influential players by calculating various network centrality calculations including betweenness, closeness and eigenvector scores. For the selected comigrated groups, XINA can calculate an enrichment test based on gene ontology and KEGG pathway terms to help understanding comigrated groups.

XINA's example dataset is from human gene names, so download human PPI database from STRING DB

string_db <- STRINGdb$new( version="10", species=9606, score_threshold=0, input_directory="" )
string_db

STRING DB provides PPI confidence score so that users can adjust to get more convincing or more comprehensive PPI networks.

get.edge.attribute(string_db$graph)$combined_score

# Medium confidence PPIs only
string_db_med_confidence <- string_db
string_db_med_confidence$graph <- subgraph.edges(string_db$graph, which(E(string_db$graph)$combined_score>=400), delete.vertices = TRUE)

# High confidence PPIs only
string_db_high_confidence <- string_db
string_db_high_confidence$graph <- subgraph.edges(string_db$graph, which(E(string_db$graph)$combined_score>=700), delete.vertices = TRUE)

When you run XINA network analysis, you need XINA clustering results and STRING db object.

xina_result <- xina_analysis(example_clusters, string_db)

If you want to use another PPI information instead of STRING DB, you can use a data frame containing PPI information. For example, XINA provides PPI information of HPRD DB datase.

# Construct HPRD PPI network
data(HPRD)
ppi_db_hprd <- simplify(graph_from_data_frame(d=hprd_ppi, directed=FALSE), remove.multiple = FALSE, remove.loops = TRUE)
head(hprd_ppi)
# Run XINA with HPRD protein-protein interaction database
xina_result_hprd <- xina_analysis(example_clusters, ppi_db_hprd, is_stringdb=FALSE)

You can draw PPI networks of all the XINA clusters using 'xina_plots' function easily. PPI network plots will be stored in the working directory

# XINA network plots labeled gene names
xina_plot_all(xina_result, example_clusters)

If node labels are excessive and the nodes cannot be visualized, labels can be removed.

# XINA network plots without labels
xina_plot_all(xina_result, example_clusters, vertex_label_flag=FALSE)

The PPI network layout can be changed. XINA's available layout options are c('sphere','star','gem','tree','circle','random','nicely'). If you need more information about igraph layouts, see http://igraph.org/r/doc/layout_.html

# Plot PPI networks with tree layout
xina_plot_all(xina_result, example_clusters, vertex_label_flag=FALSE, layout_specified='tree')

If you want to draw protein-protein interaction networks for a cluster, use 'xina_plot_bycluster'.

xina_plot_bycluster(xina_result, example_clusters, cl=1)

Also, you can print the network only for one condition

xina_plot_bycluster(xina_result, example_clusters, cl=1, condition="Control")

Print the protein-protein interaction entworks for every cluster

img_size <- c(3000,3000)
xina_plot_all(xina_result, example_clusters, img_size=img_size)

You can divide protein-protein interaction networks by experimental conditions.

xina_plot_all(xina_result, example_clusters, condition="Control", img_size=img_size)
xina_plot_all(xina_result, example_clusters, condition="Stimulus1", img_size=img_size)
xina_plot_all(xina_result, example_clusters, condition="Stimulus2", img_size=img_size)

XINA can calculate network centrality of the protein-protein interaction networks within experimental conditions.

xina_plot_all(xina_result, example_clusters, centrality_type="Eigenvector", 
              edge.color = 'gray', img_size=img_size)
xina_plot_all(xina_result, example_clusters, condition="Control", centrality_type="Eigenvector", 
              edge.color = 'gray', img_size=img_size)
xina_plot_all(xina_result, example_clusters, condition="Stimulus1", centrality_type="Eigenvector", 
              edge.color = 'gray', img_size=img_size)
xina_plot_all(xina_result, example_clusters, condition="Stimulus2", centrality_type="Eigenvector", 
              edge.color = 'gray', img_size=img_size)

Using 'alluvial_enriched' XINA will input the comigrated alluvial plot results and apply the network analysis tools and evaluate them by their network centrality using several network centrality scores, such as degree, eigenvector and hub. XINA ranks proteins by centrality score.

protein_list <- proteins_found_in_condition_biased_clusters$`Gene name`
protein_list

plot_title_ppi <- "PPI network of the proteins found in the condition-biased clusters"

# Draw PPI networks and compute eigenvector centrality score.
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi)

You can adjust the number of ranks

# Draw with less breaks
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           num_breaks=3, main=plot_title_ppi)

Without vertex labels, you may see the graph structure better

# Draw without labels
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector", 
                                                           vertex.size=10, vertex_label_flag=FALSE)

You can try different graph layouts

# Sphere layout
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi, layout_specified = "sphere")
# Star layout
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi, layout_specified = "star")

# Gem layout
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi, layout_specified = "gem")

# Tree layout
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi, layout_specified = "tree")

# Circle layout
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi, layout_specified = "circle")

# Random layout
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi, layout_specified = "random")

# Nicely layout
comigrations_condition_biased_clusters <- xina_plot_single(xina_result, protein_list, centrality_type="Eigenvector",
                                                           vertex.label.cex=0.5, vertex.size=8, vertex.label.dist=1,
                                                           main=plot_title_ppi, layout_specified = "nicely")

XINA provides functional enrichment tests using KEGG pathways and GO terms via STRINGdb.

# Enrichment test using KEGG pathway terms
kegg_enriched <- xina_enrichment(string_db, protein_list, enrichment_type = "KEGG", pval_threshold=0.1)
head(kegg_enriched$KEGG)
# plot enrichment test results
plot_enrichment_results(kegg_enriched$KEGG, num_terms=20)

GO enrichment results using STRING DB

# Enrichment test using GO pathway terms
go_enriched <- xina_enrichment(string_db, protein_list, enrichment_type = "GO", pval_threshold=0.1)
head(go_enriched$Process)
head(go_enriched$Function)
head(go_enriched$Component)

You can draw the GO enrichment results

plot_enrichment_results(go_enriched$Process, num_terms=20)
plot_enrichment_results(go_enriched$Function, num_terms=20)
plot_enrichment_results(go_enriched$Component, num_terms=20)

6. Authors

Lee, Lang Ho, Ph.D. lhlee@bwh.harvard.edu Singh, Sasha A.,Ph.D. sasingh@bwh.harvard.edu Aikawa, Masanori, M.D. Ph.D. maikawa@bwh.harvard.edu

7. Maintainers

Lee, Lang Ho, Ph.D. lhlee@bwh.harvard.edu Singh, Sasha A.,Ph.D. sasingh@bwh.harvard.edu

8. Copyright and license

Copyright (C) <2019> Lang Ho Lee, Sasha A. Singh and Masanori Aikawa This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

About

This is a read-only mirror of the git repos at https://bioconductor.org

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages