planet
is an R package for inferring ethnicity (1), gestational
age (2), and cell composition (3) from placental DNA methylation
data.
See full documentation at https://victor.rbind.io/planet
You can install planet
from this github repo:
devtools::install_github('wvictor14/planet')
See vignettes for more detailed usage.
All functions in this package take as input DNAm data the 450k and EPIC
DNAm microarray. For best performance I suggest providing unfiltered
data normalized with noob and BMIQ. A processed example dataset,
plBetas
, is provided to show the format that this data should be in.
The output of all planet
functions is a data.frame
.
A quick example of each major function is illustrated with this example data:
library(minfi)
library(planet)
#load example data
data(plBetas)
data(plPhenoData) # sample information
predictEthnicity(plBetas) %>%
head()
#> 1860 of 1860 predictors present.
#> # A tibble: 6 x 7
#> Sample_ID Predicted_ethni~ Predicted_ethni~ Prob_African Prob_Asian
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 GSM19449~ Caucasian Caucasian 0.00331 0.0164
#> 2 GSM19449~ Caucasian Caucasian 0.000772 0.000514
#> 3 GSM19449~ Caucasian Caucasian 0.000806 0.000699
#> 4 GSM19449~ Caucasian Caucasian 0.000883 0.000792
#> 5 GSM19449~ Caucasian Caucasian 0.000885 0.00130
#> 6 GSM19449~ Caucasian Caucasian 0.000852 0.000973
#> # ... with 2 more variables: Prob_Caucasian <dbl>, Highest_Prob <dbl>
There are 3 gestational age clocks for placental DNA methylation data
from Lee Y. et al. 2019 (2). To use a specific one, we can use the
type
argument in predictAge
:
predictAge(plBetas, type = 'RPC') %>%
head()
#> 558 of 558 predictors present.
#> [1] 38.46528 33.09680 34.32520 35.50937 37.63910 36.77051
Reference data to infer cell composition on placental villi DNAm samples
(3) can be used with cell deconvolution from minfi or EpiDISH. These are
provided in this package as plCellCpGsThird
and plCellCpGsFirst
for
third trimester (term) and first trimester samples, respectively.
data('plCellCpGsThird')
minfi:::projectCellType(
# subset your data to cell cpgs
plBetas[rownames(plCellCpGsThird),],
# input the reference cpg matrix
plCellCpGsThird,
lessThanOne = FALSE) %>%
head()
#> Trophoblasts Stromal Hofbauer Endothelial nRBC
#> GSM1944936 0.1091279 0.04891919 0.000000e+00 0.08983998 0.05294062
#> GSM1944939 0.2299918 0.00000000 -1.806592e-19 0.07888007 0.03374149
#> GSM1944942 0.1934287 0.03483540 0.000000e+00 0.09260353 0.02929310
#> GSM1944944 0.2239896 0.06249135 1.608645e-03 0.11040693 0.04447951
#> GSM1944946 0.1894152 0.07935955 0.000000e+00 0.10587439 0.05407587
#> GSM1944948 0.2045124 0.07657717 0.000000e+00 0.09871149 0.02269798
#> Syncytiotrophoblast
#> GSM1944936 0.6979477
#> GSM1944939 0.6377822
#> GSM1944942 0.6350506
#> GSM1944944 0.5467642
#> GSM1944946 0.6022329
#> GSM1944948 0.6085825