Skip to content

bjstigall/TidyData

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

##Data Files

One of the most exciting areas in all of data science right now is wearable computing - see for example this article . Companies like Fitbit, Nike, and Jawbone Up are racing to develop the most advanced algorithms to attract new users. The data linked to from the course website represent data collected from the accelerometers from the Samsung Galaxy S smartphone. A full description is available at the site where the data was obtained:

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Here are the data for the project:

https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip

The data is divided into files. The files are: features.txt - List of all features. activity_labels.txt - Links the class labels with their activity name. subject_train.txt - Each row identifies the subject who performed the activity for each window sample. Its range is from 1 to 30. subject_test.txt - Subject labels. X_test.txt - Test set. Y_test.txt - Test labels. X_train.txt - Training set. Y_train.txt - Training labels.

##License [1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.

Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita. November 2012.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages