A primary design goal of bluesky is to enable better research by recording rich metadata alongside measured data for use in later analysis. Documents are how we do this.
A document is our term for a Python dictionary with a schema. The bluesky RunEngine emits documents during plan execution. All of the metadata and data generated by executing the plan is organized into documents. Bluesky's document-based data model supports complex, asynchronous data collection and enables sophisticated live, prompt, streaming, and post-facto data analysis.
The bluesky documentation describes how outside functions can "subscribe" to a stream of these documents, visualizing, processing, or saving them. This section provides an outline of documents themselves, aiming to give a sense of the structure and familiarity with useful components.
The data model is composed of six types of Documents, which in Python are represented as dictionaries but could be represented as nested mappings (e.g. JSON) in any language. Each document class has a defined, but flexible, schema.
- Run Start Document --- Everything we know about an experiment or simulation before any data acquisition begins: the who / why / what and metadata such as sample information.
- Event --- A "row" of measurements with associated timestamps.
- Event Descriptor --- Metadata about a series of Events. Envision richly-detail column headings in a table, encompassing physical units, hardware configuration information, etc.
- Resource --- A pointer to an external file (or resource in general).
- Datum --- A pointer to a specific slice of data within a Resource.
- Run Stop Document --- Everything that we can only know at the very end, such as the time it ended and the exit status (succeeded, aborted, failed due to error).
Every document contains a unique identifier. The Event documents also have
a descriptor
field linking them to the Event Descriptor with their metadata.
And the Event Descriptor and Run Stop documents have a run_start
field linking
them to their Run Start. Thus, all the documents in a run are linked back to the
Run Start.
Event documents may contain the literal values or pointers to values that are stored in some external file or networked resource, yet to be loaded. The Resource and Datum document types manage references to externally-stored data.
Finally, Event and Datum can be represented in "paged" form, where multiple rows are contained in one structure for efficient transport and vectorized computation. The representations contain equivalent information: an EventPage can always be losslessly transformed into an Event and vice versa.
The scope of a "run" is left to the instrument team or individual scientist. It is quite generic: a set of Documents generated by following a given sequence of instructions. This might encompass a single short measurement (say, "a count") or a multi-step procedure such as a raster scan. A run should represent a set of individual measurements that will be collected or processed together.
For each type, we will show:
- the minimal nontrivial example that satisfies the schema
- one or more "typical" examples generated by bluesky's RunEngine during an experiment
- the formal schema, encoded using JSON schema
Again, a 'run start' document marks the beginning of the run. It comprises everything we know before we start taking data, including all metadata provided by the user and the plan.
Minimal nontrivial valid example:
Documentation note: It might seem more natural to use json code-blocks here than python ones, but using python allows us to include comments in line.
# 'run start' document
{'time': 1550069716.5092213, # UNIX epoch (seconds since 1 Jan 1970)
'uid': '10bf6945-4afd-43ca-af36-6ad8f3540bcd'} # globally unique ID
A typical example
# 'run start' document
{'detectors': ['random_walk:x'],
'hints': {'dimensions': [(['random_walk:dt'], 'primary')]},
'motors': ('random_walk:dt',),
'num_intervals': 2,
'num_points': 3,
'plan_args': {'args': ["EpicsSignal(read_pv='random_walk:dt', " "name='random_walk:dt', " 'value=1.0, ' 'timestamp=1550070001.828528, ' 'auto_monitor=False, ' 'string=False, ' "write_pv='random_walk:dt', " 'limits=False, ' 'put_complete=False)', -1, 1],
'detectors': ["EpicsSignal(read_pv='random_walk:x', " "name='random_walk:x', " 'value=1.61472277847348, ' 'timestamp=1550070000.807677, ' 'auto_monitor=False, ' 'string=False, ' "write_pv='random_walk:x', " 'limits=False, ' 'put_complete=False)'],
'num': 3,
'per_step': 'None'},
'plan_name': 'scan',
'plan_pattern': 'inner_product',
'plan_pattern_args': {'args': ["EpicsSignal(read_pv='random_walk:dt', " "name='random_walk:dt', " 'value=1.0, ' 'timestamp=1550070001.828528, ' 'auto_monitor=False, ' 'string=False, ' "write_pv='random_walk:dt', " 'limits=False, ' 'put_complete=False)', -1, 1],
'num': 3},
'plan_pattern_module': 'bluesky.plan_patterns',
'plan_type': 'generator',
'scan_id': 2,
'time': 1550070004.9850419,
'uid': 'ba1f9076-7925-4af8-916e-0e1eaa1b3c47'}
Note
Time is given in UNIX time (seconds since 1970). Software for looking at the data would, of course, translate that into a more human-readable form.
The run start document formal schema:
.. literalinclude:: ../../event_model/schemas/run_start.json
As stated above, an 'event descriptor' document provides a schema for the data in the Event documents. It provides useful information about each key in the data and about the configuration of the hardware. The layout of a descriptor is detailed and takes some time to cover, so we defer it to a :doc:`later section <event-descriptors>`.
Minimal nontrivial valid example:
# 'event descriptor' document
{'configuration': {},
'data_keys': {'camera_image': {'dtype': 'number',
'shape': [512, 512],
'source': 'PV:...'}},
'hints': {},
'name': 'primary',
'object_keys': {},
'run_start': '10bf6945-4afd-43ca-af36-6ad8f3540bcd', # foreign key
'time': 1550070954.276659,
'uid': 'd08d2ada-5f4e-495b-8e73-ff36186e7183'}
Typical example:
# 'event descriptor' document
{'configuration': {'random_walk:dt': {'data': {'random_walk:dt': -1.0},
'data_keys': {'random_walk:dt': {'dtype': 'number',
'lower_ctrl_limit': 0.0,
'precision': 0,
'shape': [],
'source': 'PV:random_walk:dt',
'units': '',
'upper_ctrl_limit': 0.0}},
'timestamps': {'random_walk:dt': 1550070004.994477}},
'random_walk:x': {'data': {'random_walk:x': 1.9221013521832928},
'data_keys': {'random_walk:x': {'dtype': 'number',
'lower_ctrl_limit': 0.0,
'precision': 0,
'shape': [],
'source': 'PV:random_walk:x',
'units': '',
'upper_ctrl_limit': 0.0}},
'timestamps': {'random_walk:x': 1550070004.812525}}},
'data_keys': {'random_walk:dt': {'dtype': 'number',
'lower_ctrl_limit': 0.0,
'object_name': 'random_walk:dt',
'precision': 0,
'shape': [],
'source': 'PV:random_walk:dt',
'units': '',
'upper_ctrl_limit': 0.0},
'random_walk:x': {'dtype': 'number',
'lower_ctrl_limit': 0.0,
'object_name': 'random_walk:x',
'precision': 0,
'shape': [],
'source': 'PV:random_walk:x',
'units': '',
'upper_ctrl_limit': 0.0}},
'hints': {'random_walk:dt': {'fields': ['random_walk:dt']},
'random_walk:x': {'fields': ['random_walk:x']}},
'name': 'primary',
'object_keys': {'random_walk:dt': ['random_walk:dt'],
'random_walk:x': ['random_walk:x']},
'run_start': 'ba1f9076-7925-4af8-916e-0e1eaa1b3c47',
'time': 1550070005.0109222,
'uid': '0ad55d9e-1b31-4af2-865c-7ab7c8171303'}
Formal schema:
.. literalinclude:: ../../event_model/schemas/run_start.json
The Event document may contain data directly:
# 'event' document
{'data': {'camera_image': [[...512x512 array...]]},
'descriptor': 'd08d2ada-5f4e-495b-8e73-ff36186e7183', # foreign key
'filled': {},
'seq_num': 1,
'time': 1550072091.2793343,
'timestamps': {'camera_image': 1550072091.2793014},
'uid': '8eac2f83-2b3e-4d67-ae2c-1d3aaff29ff5'}
or it may reference it via a datum_id
from a Datum document.
# 'event' document
{'data': {'camera_image': '272132cf-564f-428f-bf6b-149ee4287024/1'}, # foreign key
'descriptor': 'd08d2ada-5f4e-495b-8e73-ff36186e7183', # foreign key
'filled': {'camera_image': False},
'seq_num': 1,
'time': 1550072091.2793343,
'timestamps': {'camera_image': 1550072091.2793014},
'uid': '8eac2f83-2b3e-4d67-ae2c-1d3aaff29ff5'}
Note the appearance of {'filled': {'camera_image': False}}
, indicating that
the value of camera image is a foreign key; the data is not "filled in".
Typical example:
# 'event' document
{'data': {'random_walk:dt': -1.0,
'random_walk:x': 1.9221013521832928},
'descriptor': '0ad55d9e-1b31-4af2-865c-7ab7c8171303',
'filled': {},
'seq_num': 1,
'time': 1550070005.0189056,
'timestamps': {'random_walk:dt': 1550070004.994477,
'random_walk:x': 1550070004.812525},
'uid': '7b5343fe-dfd7-4884-bc18-a0b571ff60b7'}
From a data analysis perspective, these readings were simultaneous, but in actuality the occurred at separate times. The separate times of the individual readings are not thrown away (they are recorded in 'timestamps') but the overall event 'time' is often more useful.
Formal schema:
.. literalinclude:: ../../event_model/schemas/event.json
Event contents can also be represented in "paged" form, where multiple rows are contained in one structure for efficient transport and vectorized computation. The representations contain equivalent information: an EventPage can always be losslessly transformed into an Event and vice versa.
.. literalinclude:: ../../event_model/schemas/event_page.json
A 'run stop' document marks the end of the run. It contains metadata that is not known until the run completes.
The most commonly useful fields here are 'time' and 'exit_status'.
Minimal nontrivial valid example:
# 'run stop' document
{'uid': '546cc556-5f69-46b5-bf36-587d8cfe67a9',
'time': 1550072737.175858,
'run_start': '61bb1db8-c95c-4144-845b-e248c06d80e1',
'exit_status': 'success',
'reason': '',
'num_events': {}}
Formal schema:
.. literalinclude:: ../../event_model/schemas/run_stop.json
Minimal nontrivial valid example:
# 'resource' document
{'path_semantics': 'posix',
'resource_kwargs': {},
'resource_path': '/local/path/subdirectory/data_file',
'root': '/local/path/',
'run_start': '10bf6945-4afd-43ca-af36-6ad8f3540bcd',
'spec': 'SOME_SPEC',
'uid': '272132cf-564f-428f-bf6b-149ee4287024'}
Formal schema:
.. literalinclude:: ../../event_model/schemas/resource.json
Minimal nontrivial valid example:
# 'datum' document
{'resource': '272132cf-564f-428f-bf6b-149ee4287024', # foreign key
'datum_kwargs': {'index': 0}, # format-specific parameters
'datum_id': '272132cf-564f-428f-bf6b-149ee4287024/1'}
Formal schema:
.. literalinclude:: ../../event_model/schemas/datum.json
Like Events, Datum contents can also be represented in "paged" form, and the representations contain equivalent information.
.. literalinclude:: ../../event_model/schemas/datum_page.json
This is another representation of Events. This representation is deprecated. Use EventPage instead.
.. literalinclude:: ../../event_model/schemas/bulk_events.json
This is another representation of Datum. This representation is deprecated. Use DatumPage instead.
.. literalinclude:: ../../event_model/schemas/bulk_datum.json