This project is aimed to demonstrate how a deep learning model can be engineered and improoved.
It is based on SpaceNet Vegas data.
Baseline model is Unet like , it is inspired by this blog post.
Model engineering is in notebooks
dir
Example outputs are included in the examples directory
It is implied that you have a valid AWS account and installed cli.
If you don't have cli you can download data from aws s3 public bucket.
aws s3api get-object --bucket spacenet-dataset \
--key AOIs/AOI_2_Vegas/misc/AOI_2_Vegas_Test_public.tar.gz \
--request-payer requester AOI_2_Vegas_Test_public.tar.gz
mkdir AOI_2_Vegas
tar -C AOI_2_Vegas -xf AOI_2_Vegas_Test_public.tar.gz AOI_2_Vegas
https://github.com/SpaceNetChallenge/utilities/tree/master
pip install -r utilities/python/requirements.txt
python utilities/python/createDataSpaceNet.py 'AOI_2_Vegas' \
--srcImageryDirectory RGB-PanSharpen \
--outputDirectory 'AOI_2_Vegas_processed' \
--annotationType PASCALVOC2012 \
--imgSizePix 650 \
--outputFileType JPEG \
--convertTo8Bit
mkdir tiles
cp AOI_2_Vegas_processed/annotations/.*jpg AOI_2_Vegas_processed/annotations/.*segcls.tif' tiles
At this point you should have 3851 satellite images and 3851 corresponding building footprint masks.