forked from screemix/t5-experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_finetuning_hyp.py
340 lines (295 loc) · 15.9 KB
/
run_finetuning_hyp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import json
import logging
import os
import re
import string
from pathlib import Path
from megatron.data.dataset_utils import get_indexed_dataset_
import horovod.torch as hvd
from dotenv import load_dotenv
import torch
from torch.utils.data import DataLoader, DistributedSampler, Dataset
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
from trainer import Trainer, TrainerArgs
load_dotenv()
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO)
logger = logging.getLogger(__name__)
# if CUDA_VISIBLE_DEVICES is not set make all gpus visible
if os.environ.get('CUDA_VISIBLE_DEVICES', None) is None:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in range(torch.cuda.device_count())])
logger.info(f"CUDA_VISIBLE_DEVICES: {os.environ['CUDA_VISIBLE_DEVICES']}")
# first call to torch.cuda.device_count() sets visible gpus, following calls will not change the result
logger.info(f"CUDA DEVICE COUNT: {torch.cuda.device_count()}")
hvd.init()
import transformers # noqa: E402
from transformers import AutoConfig, AutoTokenizer, HfArgumentParser # noqa: E402
from utils import collect_run_configuration, get_cls_by_name, get_optimizer # noqa: E402
import optimizers # noqa: E402
# limit # of CPU threads to be used per pytorch worker, otherwise it might use all cpus and throttle gpus
# > 2 fails cause of https://github.com/pytorch/pytorch/issues/56615
# need to upgrade to torch>1.8.1
torch.set_num_threads(4)
# all gpus set with CUDA_VISIBLE_DEVICES are visible to process, indexing from 0 to ...
torch.cuda.set_device(hvd.local_rank())
parser = HfArgumentParser(TrainerArgs)
parser.add_argument('--data_path', type=str, help='path the training data, could be a folder')
parser.add_argument('--valid_data_path', type=str, help='path the valid data, could be a folder')
parser.add_argument('--test_data_path', type=str, help='path the test data, could be a folder')
parser.add_argument('--validate_only', action='store_true', default=False,
help='Skip training and run only validation. (default: False)')
parser.add_argument('--working_dir', type=str, default='.',
help='working dir, should be a dir with t5-experiments repo (default: .)')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--input_seq_len', type=int, default=128, help='input sequnce length (default: 128).')
parser.add_argument('--target_seq_len', type=int, default=16, help='input sequnce length (default: 16).')
parser.add_argument('--data_n_workers', type=int, default=2, help='number of dataloader workers (default: 2)')
parser.add_argument('--source_prefix', type=str, default='', help='add task prefix to a source string (default: "")')
# model args
parser.add_argument('--from_pretrained', type=str, help='model name in HF Model Hub (default: "")')
parser.add_argument('--model_cfg', type=str, help='path to model configuration file (default: "")')
parser.add_argument('--model_cls', type=str, default='transformers:BertForPreTraining',
help='model class name to use (default: transformers:BertForPreTraining)')
parser.add_argument('--model_type', type=str, default='encoder',
help='model type, encoder, encoder-decoder, decoder, affects preprocessing (default: encoder)')
# tokenizer
# todo: add wordpiece tokenizers support?
parser.add_argument('--tokenizer', type=str, default=None, help='path or name of pre-trained HF Tokenizer')
# optimizer args
parser.add_argument('--optimizer', type=str, default='AdamW', help='optimizer name: AdamW, Adafactor. (default: AdamW)')
parser.add_argument('--weight_decay', type=float, default=0.0, help='optimizer weight decay (default: 0.0)')
parser.add_argument('--scale_parameter', action='store_true', default=False,
help='Adafactor scale_parameter (default: False)')
parser.add_argument('--relative_step', action='store_true', default=False,
help='Adafactor relative_step (default: False)')
parser.add_argument('--warmup_init', action='store_true', default=False,
help='Adafactor warmup_init (default: False)')
class HyperpartisanDataset(Dataset):
def __init__(self, datafile, x_field='text', label_field='label'):
if isinstance(datafile, str):
# convert str path to folder to Path
datafile = Path(datafile)
self.data = []
for line in datafile.open('r'):
self.data += [json.loads(line)]
self.x_field = x_field
self.label_field = label_field
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = self.data[idx][self.x_field]
label = self.data[idx][self.label_field]
return x, label
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
if __name__ == '__main__':
args = parser.parse_args()
# set current working dir
args.working_dir = str(Path(args.working_dir).expanduser().absolute())
os.chdir(args.working_dir)
if hvd.rank() == 0:
logger.info(f'hvd size: {hvd.size()}')
logger.info(f'FP16: {args.fp16}')
if hvd.rank() == 0 and args.model_path is None:
logger.warning('model_path is not set: config, logs and checkpoints will not be saved.')
# create model path and save configuration
if hvd.rank() == 0 and args.model_path is not None:
model_path = Path(args.model_path)
if not model_path.exists():
Path(model_path).mkdir(parents=True)
args_dict = collect_run_configuration(args)
# todo: if model path exists and there is config file, write new config file aside
json.dump(args_dict, open(model_path/'config.json', 'w'), indent=4)
if not args.from_pretrained:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
else:
tokenizer = AutoTokenizer.from_pretrained(args.from_pretrained)
labels_map = {'false': 0, 'true': 1}
# collate_fn depends on model type (encoder, encoder-decoder)
# collate_fn defines how data is prepared for the model
if args.model_type == 'encoder':
num_labels = len(labels_map)
encode_plus_kwargs = {'max_length': args.input_seq_len,
'truncation': True,
'padding': 'longest',
'pad_to_multiple_of': 64}
def collate_fn(batch):
inputs, labels = zip(*batch)
features = tokenizer.batch_encode_plus(list(inputs), return_tensors='pt', **encode_plus_kwargs)
# map labels to ids
labels = np.array([labels_map[t] for t in labels])
labels = {'labels': torch.from_numpy(labels)}
return {**features, **labels}
elif args.model_type == 'encoder-decoder':
global_attention_first_token = False # should be True for LED
num_labels = 0
encode_plus_kwargs = {'truncation': True,
'padding': 'longest',
'pad_to_multiple_of': 1}
# generate predictions to fixed length
generate_kwargs = {'max_length': args.target_seq_len, 'min_length': args.target_seq_len}
# generate predictions to max targets length in batch
generate_kwargs = {}
def collate_fn(batch):
inputs, labels = zip(*batch)
if args.source_prefix:
inputs = [args.source_prefix + inp for inp in inputs]
features = tokenizer.batch_encode_plus(list(inputs), max_length=args.input_seq_len,
return_tensors='pt', **encode_plus_kwargs)
with tokenizer.as_target_tokenizer():
labels = tokenizer.batch_encode_plus(list(labels), max_length=args.target_seq_len,
return_tensors='pt', **encode_plus_kwargs).input_ids
labels[labels == tokenizer.pad_token_id] = -100
features['labels'] = labels
if 'global_attention_mask' in features:
raise RuntimeError('What global attention mask for Longformer and LongformerEncoder-Decoder should be?')
return features
else:
raise NotImplementedError('only encoder & encoder-decoder type of model is supported')
# get train dataset
if hvd.rank() == 0:
logger.info(f'preparing training data from: {args.data_path}')
data_path = Path(args.data_path).expanduser().absolute()
train_dataset = HyperpartisanDataset(data_path)
# shuffle train data each epoch (one loop over train_dataset)
train_sampler = DistributedSampler(train_dataset, rank=hvd.rank(), num_replicas=hvd.size(), shuffle=True,
drop_last=False, seed=args.seed)
per_worker_batch_size = args.batch_size * args.gradient_accumulation_steps
global_batch_size = per_worker_batch_size * hvd.size()
kwargs = {'pin_memory': True, 'num_workers': args.data_n_workers}
train_dataloader = DataLoader(train_dataset, batch_size=per_worker_batch_size, sampler=train_sampler,
collate_fn=collate_fn, **kwargs)
# get validation dataset
if args.valid_data_path:
if hvd.rank() == 0:
logger.info(f'preparing validation data from: {args.valid_data_path}')
valid_data_path = Path(args.valid_data_path).expanduser().absolute()
valid_dataset = HyperpartisanDataset(valid_data_path)
valid_sampler = DistributedSampler(valid_dataset, rank=hvd.rank(), num_replicas=hvd.size(), shuffle=False)
valid_dataloader = DataLoader(valid_dataset, batch_size=per_worker_batch_size, sampler=valid_sampler,
collate_fn=collate_fn, **kwargs)
if args.valid_interval is None:
args.valid_interval = args.log_interval
else:
valid_dataloader = None
if hvd.rank() == 0:
logger.info('No validation data is used.')
# get test dataset
if args.test_data_path:
if hvd.rank() == 0:
logger.info(f'preparing test data from: {args.test_data_path}')
test_data_path = Path(args.test_data_path).expanduser().absolute()
test_dataset = HyperpartisanDataset(test_data_path)
test_sampler = DistributedSampler(test_dataset, rank=hvd.rank(), num_replicas=hvd.size(), shuffle=False)
test_dataloader = DataLoader(test_dataset, batch_size=per_worker_batch_size, sampler=test_sampler,
collate_fn=collate_fn, **kwargs)
# define model
model_cls = get_cls_by_name(args.model_cls)
if hvd.rank() == 0:
logger.info(f'Using model class: {model_cls}')
if not args.from_pretrained:
model_cfg = AutoConfig.from_pretrained(args.model_cfg)
model_cfg.num_labels = num_labels
model = model_cls(config=model_cfg)
else:
if hvd.rank() == 0:
logger.info(f'Loading pretrained model: {args.from_pretrained}')
model = model_cls.from_pretrained(args.from_pretrained, num_labels=num_labels)
# define optimizer
optimizer_cls = get_optimizer(args.optimizer)
if optimizer_cls is None:
raise RuntimeError(f'{args.optimizer} was not found in optimizers, torch.optim, transformers.optimization')
if hvd.rank() == 0:
logger.info(f'Using optimizer class: {optimizer_cls}')
# todo: group optimizer params
if optimizer_cls in [transformers.optimization.Adafactor, optimizers.Adafactor]:
# https://github.com/huggingface/transformers/pull/9751/files -> transformers 4.3.0
optimizer = optimizer_cls(model.parameters(), lr=args.lr,
scale_parameter=args.scale_parameter,
relative_step=args.relative_step,
warmup_init=args.warmup_init,
weight_decay=args.weight_decay)
else:
optimizer = optimizer_cls(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# for encoder only classification
def keep_for_metrics_fn(batch, output):
# select data from batch and model output that would be used to compute metrics
data = {}
if args.model_type == 'encoder':
data['labels'] = batch['labels']
data['predictions'] = torch.argmax(output['logits'].detach(), dim=-1)
elif args.model_type == 'encoder-decoder' and 'generation_outputs' in output:
# logger.info(f'{output["generation_outputs"].shape}')
data['labels'] = batch['labels']
data['generation_outputs'] = output['generation_outputs']
return data
def metrics_fn(data):
# compute metrics based on stored labels, predictions, ...
metrics = {}
y, p = None, None
if args.model_type == 'encoder':
y, p = data['labels'], data['predictions']
elif args.model_type == 'encoder-decoder' and 'generation_outputs' in data:
y = tokenizer.batch_decode(data['labels'], skip_special_tokens=True)
p = tokenizer.batch_decode(data['generation_outputs'], skip_special_tokens=True)
# if hvd.rank() == 0:
# logger.info(f'{y}')
# logger.info(f'{p}')
# for label, out in zip(data['labels'][:10], data['generation_outputs'][:10]):
# logger.info(f'{label} {out}')
# map to labels
y = [labels_map.get(normalize_answer(_y), 0) for _y in y]
p = [labels_map.get(normalize_answer(_p), 0) for _p in p]
if y is not None and p is not None:
# accuracy, f1, precision, recall
metrics['accuracy'] = accuracy_score(y, p)
metrics['f1'] = f1_score(y, p)
metrics['precision'] = precision_score(y, p)
metrics['recall'] = recall_score(y, p)
return metrics
trainer = Trainer(args, model, optimizer, train_dataloader, valid_dataloader, train_sampler,
keep_for_metrics_fn=keep_for_metrics_fn, metrics_fn=metrics_fn,
generate_kwargs=generate_kwargs if args.use_generate_on_valid else {})
if not args.validate_only:
# train loop
trainer.train()
# make sure all workers are done
hvd.barrier()
# run validation after training
if args.save_best:
best_model_path = str(Path(args.model_path) / 'model_best.pth')
if hvd.rank() == 0:
logger.info(f'Loading best saved model from {best_model_path}')
trainer.load(best_model_path)
if args.valid_data_path:
if hvd.rank() == 0:
logger.info('Runnning validation on valid data:')
trainer.validate(valid_dataloader, write_tb=False)
if args.test_data_path:
if hvd.rank() == 0:
logger.info('Runnning validation on test data:')
trainer.validate(test_dataloader, split='test', write_tb=True)
else:
# run validation, do not write to tensorboard
if hvd.rank() == 0:
logger.info('Running validation on train set:')
trainer.validate(train_dataloader, write_tb=False)
if args.valid_data_path:
if hvd.rank() == 0:
logger.info('Running validation on valid data:')
trainer.validate(valid_dataloader, write_tb=False)
if args.test_data_path:
if hvd.rank() == 0:
logger.info('Running validation on test data:')
trainer.validate(test_dataloader, split='test', write_tb=False)