Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time
April 1, 2018 14:14
March 18, 2018 19:31
February 21, 2018 02:55
April 1, 2018 14:30
December 27, 2017 18:12
November 30, 2017 23:11
December 27, 2017 03:24
April 1, 2018 14:14
April 1, 2018 14:14
April 1, 2018 14:38
April 1, 2018 15:19
April 1, 2018 14:32
April 1, 2018 15:19
December 27, 2017 03:24
April 1, 2018 14:58
April 1, 2018 14:38
April 1, 2018 15:19

Build Status


Yet Another Reinforcement Learning Package

Implementations of CEM, REINFORCE, TRPO, DDQN, A2C with reproducible benchmarks. Experiments are templated using jsonschema and are compared to published results. This is meant to be a starting point for working implementations of classic RL algorithms. Unfortunately even implementations from OpenAI baselines are not always reproducible.

A working Dockerfile with yarlp installed can be run with:

  • docker build -t "yarlpd" .
  • docker run -it yarlpd bash

To run a benchmark, simply:

python yarlp/experiment/ --help

If you want to run things manually, look in examples or look at this:

from yarlp.agent.trpo_agent import TRPOAgent
from yarlp.utils.env_utils import NormalizedGymEnv

env = NormalizedGymEnv('MountainCarContinuous-v0')
agent = TRPOAgent(env, seed=123)


We benchmark against published results and Openai baselines where available using yarlp/experiment/ Benchmark scripts for Openai baselines were made ad-hoc, such as this one.


BeamRider Breakout Pong
QBert Seaquest SpaceInvaders

DDQN with dueling networks and prioritized replay

python yarlp/experiment/ run_atari10m_ddqn_benchmark

I trained 6 Atari environments for 10M time-steps (40M frames), using 1 random seed, since I only have 1 GPU and limited time on this Earth. I used DDQN with dueling networks, but no prioritized replay (although it's implemented). I compare the final mean 100 episode raw scores for yarlp (with exploration of 0.01) with results from Hasselt et al, 2015 and Wang et al, 2016 which train for 200M frames and evaluate on 100 episodes (exploration of 0.05).

I don't compare to OpenAI baselines because the OpenAI DDQN implementation is not currently able to reproduce published results as of 2018-01-20. See this github issue, although I found these benchmark plots to be pretty helpful.

env yarlp DUEL 40M Frames Hasselt et al DDQN 200M Frames Wang et al DUEL 200M Frames
BeamRider 8705 7654 12164
Breakout 423.5 375 345
Pong 20.73 21 21
QBert 5410.75 14875 19220.3
Seaquest 5300.5 7995 50245.2
SpaceInvaders 1978.2 3154.6 6427.3
BeamRiderNoFrameskip-v4 BreakoutNoFrameskip-v4 PongNoFrameskip-v4 QbertNoFrameskip-v4
SeaquestNoFrameskip-v4 SpaceInvadersNoFrameskip-v4


python yarlp/experiment/ run_atari10m_a2c_benchmark

A2C on 10M time-steps (40M frames) with 1 random seed. Results compared to learning curves from Mnih et al, 2016 extracted at 10M time-steps from Figure 3. You are invited to run for multiple seeds and the full 200M frames for a better comparison.

env yarlp A2C 40M Mnih et al A3C 40M 16-threads
BeamRider 3150 ~3000
Breakout 418 ~150
Pong 20 ~20
QBert 3644 ~1000
SpaceInvaders 805 ~600
BeamRiderNoFrameskip-v4 BreakoutNoFrameskip-v4 PongNoFrameskip-v4 QbertNoFrameskip-v4
SeaquestNoFrameskip-v4 SpaceInvadersNoFrameskip-v4

Here are some more plots from OpenAI to compare against.



python yarlp/experiment/ run_mujoco1m_benchmark

We average over 5 random seeds instead of 3 for both baselines and yarlp. More seeds probably wouldn't hurt here, we report 95th percent confidence intervals.

Hopper-v1 HalfCheetah-v1 Reacher-v1 Swimmer-v1
InvertedDoublePendulum-v1 Walker2d-v1 InvertedPendulum-v1

CLI scripts

CLI convenience scripts will be installed with the package:

  • Run a benchmark:
    • python yarlp/experiment/ --help
  • Plot yarlp compared to Openai baselines benchmarks:
    • compare_benchmark <yarlp-experiment-dir> <baseline-experiment-dir>
  • Experiments:
    • Experiments can be defined using json, validated with jsonschema. See here for sample experiment configs. You can do a grid search if multiple parameters are specified, which will run in parallel.
    • Example: run_yarlp_experiment --spec-file experiment_configs/trpo_experiment_mult_params.json
  • Experiment plots:
    • make_plots <experiment-dir>


yet another reinforcement learning package







No packages published