PyTorch implementation for Prototype-Based Multisource Domain Adaptation (TNNLS2021). This repository is based on framework from dassl and modified part of the code.
The installation can refer to dassl.
Please download dig-5, office-31, office-home to datasets folder.
CUDA_VISIBLE_DEVICES=1 python tools/train.py --trainer MSDTR_CDAN --source-domains mnist mnist_m svhn syn --target-domains usps --dataset-config-file configs/datasets/digit5.yaml --config-file configs/trainers/msdtr_cdan/digit5.yaml --output-dir output_final/msdtr_cdan/dig/usps/1
If you use this code for your research, please cite our paper:
@article{zhou2021prototype,
title={Prototype-Based Multisource Domain Adaptation},
author={Zhou, Lihua and Ye, Mao and Zhang, Dan and Zhu, Ce and Ji, Luping},
journal={IEEE Transactions on Neural Networks and Learning Systems},
year={2021},
publisher={IEEE}
}