Nextstep integrates major popular machine learning algorithms, offering data scientists an all-in-one package. At the same time, it lifts the programming constraints by extracting key hyper-parameters into a configuration dictionary, empowering less experienced python users the ability to explore machine learning.
Nextstep was originally developed for a data science challenge which involved price prediction. So it has a dedicated module to obtain data (oil and weather) via open API or web-scraping. It evolves into a machine learning prediction toolkit.
First time installation
pip install nextstep
Upgrade to the latest version
pip install nextstep --upgrade
generate oil prices
from nextstep.getData.oil import *
oil_prices.process()
brent_daily.csv and wti_daily.csv will be generated at the current directory. They contain historical oil price until the most recent day.
generate weather data
This function relies on an API key from worldweatheronline. It is free for 60 days as of 27/3/2020. It will generate csv data files in the current directory.
from nextstep.getData.weather import weather
config = {
'frequency' : 1,
'start_date' : '01-Jan-2020',
'end_date' : '31-Jan-2020',
'api_key' : 'your api key here',
'location_list' : ['singapore'],
'location_label' : False
}
weather(config).get_weather_data()
Every ML model has a unique config. Please fill in accordingly.
# examples, please fill in according to your project scope
from nextstep.model.random_forest import random_forest
config = {
'label_column' : 'USEP',
'train_size' : 0.9,
'seed' : 66,
'n_estimators' : 10,
'bootstrap' : True,
'criterion' : 'mse',
'max_features' : 'sqrt'
}
random_forest_shell = random_forest(config)
random_forest_shell.build_model(data) # build model
from nextstep.model.arima import arima
config = {
'lag' : 7,
'differencing' : 0,
'window_size' : 2,
'label_column' : 'USEP',
'train_size' : 0.8,
'seed' : 33
}
arima_shell = arima(config)
arima_shell.autocorrelation(data) # plot autocorrelation to determine p, lag order
arima_shell.partial_autocorrelation(data) # plot partial autocorrelation to determine q, moving average widow size
arima_shell.build_model(data) # build model
# residual plot to check model performance
arima_shell.residual_plot()
arima_shell.residual_density_plot()
Pull requests are welcome
yuesong YANG
bolin ZHU
Ziyue Yang