forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneric_scheduler.go
1154 lines (1069 loc) · 40.5 KB
/
generic_scheduler.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package core
import (
"context"
"fmt"
"math"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/golang/glog"
"k8s.io/api/core/v1"
policy "k8s.io/api/policy/v1beta1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/labels"
"k8s.io/apimachinery/pkg/util/errors"
utiltrace "k8s.io/apiserver/pkg/util/trace"
corelisters "k8s.io/client-go/listers/core/v1"
"k8s.io/client-go/util/workqueue"
"k8s.io/kubernetes/pkg/scheduler/algorithm"
"k8s.io/kubernetes/pkg/scheduler/algorithm/predicates"
schedulerapi "k8s.io/kubernetes/pkg/scheduler/api"
schedulercache "k8s.io/kubernetes/pkg/scheduler/cache"
"k8s.io/kubernetes/pkg/scheduler/core/equivalence"
"k8s.io/kubernetes/pkg/scheduler/metrics"
"k8s.io/kubernetes/pkg/scheduler/util"
"k8s.io/kubernetes/pkg/scheduler/volumebinder"
)
const (
// minFeasibleNodesToFind is the minimum number of nodes that would be scored
// in each scheduling cycle. This is a semi-arbitrary value to ensure that a
// certain minimum of nodes are checked for feasibility. This in turn helps
// ensure a minimum level of spreading.
minFeasibleNodesToFind = 100
)
// FailedPredicateMap declares a map[string][]algorithm.PredicateFailureReason type.
type FailedPredicateMap map[string][]algorithm.PredicateFailureReason
// FitError describes a fit error of a pod.
type FitError struct {
Pod *v1.Pod
NumAllNodes int
FailedPredicates FailedPredicateMap
}
// ErrNoNodesAvailable is used to describe the error that no nodes available to schedule pods.
var ErrNoNodesAvailable = fmt.Errorf("no nodes available to schedule pods")
const (
// NoNodeAvailableMsg is used to format message when no nodes available.
NoNodeAvailableMsg = "0/%v nodes are available"
)
// Error returns detailed information of why the pod failed to fit on each node
func (f *FitError) Error() string {
reasons := make(map[string]int)
for _, predicates := range f.FailedPredicates {
for _, pred := range predicates {
reasons[pred.GetReason()]++
}
}
sortReasonsHistogram := func() []string {
reasonStrings := []string{}
for k, v := range reasons {
reasonStrings = append(reasonStrings, fmt.Sprintf("%v %v", v, k))
}
sort.Strings(reasonStrings)
return reasonStrings
}
reasonMsg := fmt.Sprintf(NoNodeAvailableMsg+": %v.", f.NumAllNodes, strings.Join(sortReasonsHistogram(), ", "))
return reasonMsg
}
type genericScheduler struct {
cache schedulercache.Cache
equivalenceCache *equivalence.Cache
schedulingQueue SchedulingQueue
predicates map[string]algorithm.FitPredicate
priorityMetaProducer algorithm.PriorityMetadataProducer
predicateMetaProducer algorithm.PredicateMetadataProducer
prioritizers []algorithm.PriorityConfig
extenders []algorithm.SchedulerExtender
lastNodeIndex uint64
alwaysCheckAllPredicates bool
cachedNodeInfoMap map[string]*schedulercache.NodeInfo
volumeBinder *volumebinder.VolumeBinder
pvcLister corelisters.PersistentVolumeClaimLister
disablePreemption bool
percentageOfNodesToScore int32
}
// Schedule tries to schedule the given pod to one of the nodes in the node list.
// If it succeeds, it will return the name of the node.
// If it fails, it will return a FitError error with reasons.
func (g *genericScheduler) Schedule(pod *v1.Pod, nodeLister algorithm.NodeLister) (string, error) {
trace := utiltrace.New(fmt.Sprintf("Scheduling %s/%s", pod.Namespace, pod.Name))
defer trace.LogIfLong(100 * time.Millisecond)
if err := podPassesBasicChecks(pod, g.pvcLister); err != nil {
return "", err
}
nodes, err := nodeLister.List()
if err != nil {
return "", err
}
if len(nodes) == 0 {
return "", ErrNoNodesAvailable
}
// Used for all fit and priority funcs.
err = g.cache.UpdateNodeNameToInfoMap(g.cachedNodeInfoMap)
if err != nil {
return "", err
}
trace.Step("Computing predicates")
startPredicateEvalTime := time.Now()
filteredNodes, failedPredicateMap, err := g.findNodesThatFit(pod, nodes)
if err != nil {
return "", err
}
if len(filteredNodes) == 0 {
return "", &FitError{
Pod: pod,
NumAllNodes: len(nodes),
FailedPredicates: failedPredicateMap,
}
}
metrics.SchedulingAlgorithmPredicateEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPredicateEvalTime))
metrics.SchedulingLatency.WithLabelValues(metrics.PredicateEvaluation).Observe(metrics.SinceInSeconds(startPredicateEvalTime))
trace.Step("Prioritizing")
startPriorityEvalTime := time.Now()
// When only one node after predicate, just use it.
if len(filteredNodes) == 1 {
metrics.SchedulingAlgorithmPriorityEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPriorityEvalTime))
return filteredNodes[0].Name, nil
}
metaPrioritiesInterface := g.priorityMetaProducer(pod, g.cachedNodeInfoMap)
priorityList, err := PrioritizeNodes(pod, g.cachedNodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders)
if err != nil {
return "", err
}
metrics.SchedulingAlgorithmPriorityEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPriorityEvalTime))
metrics.SchedulingLatency.WithLabelValues(metrics.PriorityEvaluation).Observe(metrics.SinceInSeconds(startPriorityEvalTime))
trace.Step("Selecting host")
return g.selectHost(priorityList)
}
// Prioritizers returns a slice containing all the scheduler's priority
// functions and their config. It is exposed for testing only.
func (g *genericScheduler) Prioritizers() []algorithm.PriorityConfig {
return g.prioritizers
}
// Predicates returns a map containing all the scheduler's predicate
// functions. It is exposed for testing only.
func (g *genericScheduler) Predicates() map[string]algorithm.FitPredicate {
return g.predicates
}
// findMaxScores returns the indexes of nodes in the "priorityList" that has the highest "Score".
func findMaxScores(priorityList schedulerapi.HostPriorityList) []int {
maxScoreIndexes := make([]int, 0, len(priorityList)/2)
maxScore := priorityList[0].Score
for i, hp := range priorityList {
if hp.Score > maxScore {
maxScore = hp.Score
maxScoreIndexes = maxScoreIndexes[:0]
maxScoreIndexes = append(maxScoreIndexes, i)
} else if hp.Score == maxScore {
maxScoreIndexes = append(maxScoreIndexes, i)
}
}
return maxScoreIndexes
}
// selectHost takes a prioritized list of nodes and then picks one
// in a round-robin manner from the nodes that had the highest score.
func (g *genericScheduler) selectHost(priorityList schedulerapi.HostPriorityList) (string, error) {
if len(priorityList) == 0 {
return "", fmt.Errorf("empty priorityList")
}
maxScores := findMaxScores(priorityList)
ix := int(g.lastNodeIndex % uint64(len(maxScores)))
g.lastNodeIndex++
return priorityList[maxScores[ix]].Host, nil
}
// preempt finds nodes with pods that can be preempted to make room for "pod" to
// schedule. It chooses one of the nodes and preempts the pods on the node and
// returns 1) the node, 2) the list of preempted pods if such a node is found,
// 3) A list of pods whose nominated node name should be cleared, and 4) any
// possible error.
func (g *genericScheduler) Preempt(pod *v1.Pod, nodeLister algorithm.NodeLister, scheduleErr error) (*v1.Node, []*v1.Pod, []*v1.Pod, error) {
// Scheduler may return various types of errors. Consider preemption only if
// the error is of type FitError.
fitError, ok := scheduleErr.(*FitError)
if !ok || fitError == nil {
return nil, nil, nil, nil
}
err := g.cache.UpdateNodeNameToInfoMap(g.cachedNodeInfoMap)
if err != nil {
return nil, nil, nil, err
}
if !podEligibleToPreemptOthers(pod, g.cachedNodeInfoMap) {
glog.V(5).Infof("Pod %v/%v is not eligible for more preemption.", pod.Namespace, pod.Name)
return nil, nil, nil, nil
}
allNodes, err := nodeLister.List()
if err != nil {
return nil, nil, nil, err
}
if len(allNodes) == 0 {
return nil, nil, nil, ErrNoNodesAvailable
}
potentialNodes := nodesWherePreemptionMightHelp(allNodes, fitError.FailedPredicates)
if len(potentialNodes) == 0 {
glog.V(3).Infof("Preemption will not help schedule pod %v/%v on any node.", pod.Namespace, pod.Name)
// In this case, we should clean-up any existing nominated node name of the pod.
return nil, nil, []*v1.Pod{pod}, nil
}
pdbs, err := g.cache.ListPDBs(labels.Everything())
if err != nil {
return nil, nil, nil, err
}
nodeToVictims, err := selectNodesForPreemption(pod, g.cachedNodeInfoMap, potentialNodes, g.predicates,
g.predicateMetaProducer, g.schedulingQueue, pdbs)
if err != nil {
return nil, nil, nil, err
}
// We will only check nodeToVictims with extenders that support preemption.
// Extenders which do not support preemption may later prevent preemptor from being scheduled on the nominated
// node. In that case, scheduler will find a different host for the preemptor in subsequent scheduling cycles.
nodeToVictims, err = g.processPreemptionWithExtenders(pod, nodeToVictims)
if err != nil {
return nil, nil, nil, err
}
candidateNode := pickOneNodeForPreemption(nodeToVictims)
if candidateNode == nil {
return nil, nil, nil, err
}
// Lower priority pods nominated to run on this node, may no longer fit on
// this node. So, we should remove their nomination. Removing their
// nomination updates these pods and moves them to the active queue. It
// lets scheduler find another place for them.
nominatedPods := g.getLowerPriorityNominatedPods(pod, candidateNode.Name)
if nodeInfo, ok := g.cachedNodeInfoMap[candidateNode.Name]; ok {
return nodeInfo.Node(), nodeToVictims[candidateNode].Pods, nominatedPods, err
}
return nil, nil, nil, fmt.Errorf(
"preemption failed: the target node %s has been deleted from scheduler cache",
candidateNode.Name)
}
// processPreemptionWithExtenders processes preemption with extenders
func (g *genericScheduler) processPreemptionWithExtenders(
pod *v1.Pod,
nodeToVictims map[*v1.Node]*schedulerapi.Victims,
) (map[*v1.Node]*schedulerapi.Victims, error) {
if len(nodeToVictims) > 0 {
for _, extender := range g.extenders {
if extender.SupportsPreemption() && extender.IsInterested(pod) {
newNodeToVictims, err := extender.ProcessPreemption(
pod,
nodeToVictims,
g.cachedNodeInfoMap,
)
if err != nil {
if extender.IsIgnorable() {
glog.Warningf("Skipping extender %v as it returned error %v and has ignorable flag set",
extender, err)
continue
}
return nil, err
}
// Replace nodeToVictims with new result after preemption. So the
// rest of extenders can continue use it as parameter.
nodeToVictims = newNodeToVictims
// If node list becomes empty, no preemption can happen regardless of other extenders.
if len(nodeToVictims) == 0 {
break
}
}
}
}
return nodeToVictims, nil
}
// getLowerPriorityNominatedPods returns pods whose priority is smaller than the
// priority of the given "pod" and are nominated to run on the given node.
// Note: We could possibly check if the nominated lower priority pods still fit
// and return those that no longer fit, but that would require lots of
// manipulation of NodeInfo and PredicateMeta per nominated pod. It may not be
// worth the complexity, especially because we generally expect to have a very
// small number of nominated pods per node.
func (g *genericScheduler) getLowerPriorityNominatedPods(pod *v1.Pod, nodeName string) []*v1.Pod {
pods := g.schedulingQueue.WaitingPodsForNode(nodeName)
if len(pods) == 0 {
return nil
}
var lowerPriorityPods []*v1.Pod
podPriority := util.GetPodPriority(pod)
for _, p := range pods {
if util.GetPodPriority(p) < podPriority {
lowerPriorityPods = append(lowerPriorityPods, p)
}
}
return lowerPriorityPods
}
// numFeasibleNodesToFind returns the number of feasible nodes that once found, the scheduler stops
// its search for more feasible nodes.
func (g *genericScheduler) numFeasibleNodesToFind(numAllNodes int32) int32 {
if numAllNodes < minFeasibleNodesToFind || g.percentageOfNodesToScore <= 0 ||
g.percentageOfNodesToScore >= 100 {
return numAllNodes
}
numNodes := numAllNodes * g.percentageOfNodesToScore / 100
if numNodes < minFeasibleNodesToFind {
return minFeasibleNodesToFind
}
return numNodes
}
// Filters the nodes to find the ones that fit based on the given predicate functions
// Each node is passed through the predicate functions to determine if it is a fit
func (g *genericScheduler) findNodesThatFit(pod *v1.Pod, nodes []*v1.Node) ([]*v1.Node, FailedPredicateMap, error) {
var filtered []*v1.Node
failedPredicateMap := FailedPredicateMap{}
if len(g.predicates) == 0 {
filtered = nodes
} else {
allNodes := int32(g.cache.NodeTree().NumNodes)
numNodesToFind := g.numFeasibleNodesToFind(allNodes)
// Create filtered list with enough space to avoid growing it
// and allow assigning.
filtered = make([]*v1.Node, numNodesToFind)
errs := errors.MessageCountMap{}
var (
predicateResultLock sync.Mutex
filteredLen int32
equivClass *equivalence.Class
)
ctx, cancel := context.WithCancel(context.Background())
// We can use the same metadata producer for all nodes.
meta := g.predicateMetaProducer(pod, g.cachedNodeInfoMap)
if g.equivalenceCache != nil {
// getEquivalenceClassInfo will return immediately if no equivalence pod found
equivClass = equivalence.NewClass(pod)
}
checkNode := func(i int) {
var nodeCache *equivalence.NodeCache
nodeName := g.cache.NodeTree().Next()
if g.equivalenceCache != nil {
nodeCache, _ = g.equivalenceCache.GetNodeCache(nodeName)
}
fits, failedPredicates, err := podFitsOnNode(
pod,
meta,
g.cachedNodeInfoMap[nodeName],
g.predicates,
g.cache,
nodeCache,
g.schedulingQueue,
g.alwaysCheckAllPredicates,
equivClass,
)
if err != nil {
predicateResultLock.Lock()
errs[err.Error()]++
predicateResultLock.Unlock()
return
}
if fits {
length := atomic.AddInt32(&filteredLen, 1)
if length > numNodesToFind {
cancel()
atomic.AddInt32(&filteredLen, -1)
} else {
filtered[length-1] = g.cachedNodeInfoMap[nodeName].Node()
}
} else {
predicateResultLock.Lock()
failedPredicateMap[nodeName] = failedPredicates
predicateResultLock.Unlock()
}
}
// Stops searching for more nodes once the configured number of feasible nodes
// are found.
workqueue.ParallelizeUntil(ctx, 16, int(allNodes), checkNode)
filtered = filtered[:filteredLen]
if len(errs) > 0 {
return []*v1.Node{}, FailedPredicateMap{}, errors.CreateAggregateFromMessageCountMap(errs)
}
}
if len(filtered) > 0 && len(g.extenders) != 0 {
for _, extender := range g.extenders {
if !extender.IsInterested(pod) {
continue
}
filteredList, failedMap, err := extender.Filter(pod, filtered, g.cachedNodeInfoMap)
if err != nil {
if extender.IsIgnorable() {
glog.Warningf("Skipping extender %v as it returned error %v and has ignorable flag set",
extender, err)
continue
} else {
return []*v1.Node{}, FailedPredicateMap{}, err
}
}
for failedNodeName, failedMsg := range failedMap {
if _, found := failedPredicateMap[failedNodeName]; !found {
failedPredicateMap[failedNodeName] = []algorithm.PredicateFailureReason{}
}
failedPredicateMap[failedNodeName] = append(failedPredicateMap[failedNodeName], predicates.NewFailureReason(failedMsg))
}
filtered = filteredList
if len(filtered) == 0 {
break
}
}
}
return filtered, failedPredicateMap, nil
}
// addNominatedPods adds pods with equal or greater priority which are nominated
// to run on the node given in nodeInfo to meta and nodeInfo. It returns 1) whether
// any pod was found, 2) augmented meta data, 3) augmented nodeInfo.
func addNominatedPods(podPriority int32, meta algorithm.PredicateMetadata,
nodeInfo *schedulercache.NodeInfo, queue SchedulingQueue) (bool, algorithm.PredicateMetadata,
*schedulercache.NodeInfo) {
if queue == nil || nodeInfo == nil || nodeInfo.Node() == nil {
// This may happen only in tests.
return false, meta, nodeInfo
}
nominatedPods := queue.WaitingPodsForNode(nodeInfo.Node().Name)
if nominatedPods == nil || len(nominatedPods) == 0 {
return false, meta, nodeInfo
}
var metaOut algorithm.PredicateMetadata
if meta != nil {
metaOut = meta.ShallowCopy()
}
nodeInfoOut := nodeInfo.Clone()
for _, p := range nominatedPods {
if util.GetPodPriority(p) >= podPriority {
nodeInfoOut.AddPod(p)
if metaOut != nil {
metaOut.AddPod(p, nodeInfoOut)
}
}
}
return true, metaOut, nodeInfoOut
}
// podFitsOnNode checks whether a node given by NodeInfo satisfies the given predicate functions.
// For given pod, podFitsOnNode will check if any equivalent pod exists and try to reuse its cached
// predicate results as possible.
// This function is called from two different places: Schedule and Preempt.
// When it is called from Schedule, we want to test whether the pod is schedulable
// on the node with all the existing pods on the node plus higher and equal priority
// pods nominated to run on the node.
// When it is called from Preempt, we should remove the victims of preemption and
// add the nominated pods. Removal of the victims is done by SelectVictimsOnNode().
// It removes victims from meta and NodeInfo before calling this function.
func podFitsOnNode(
pod *v1.Pod,
meta algorithm.PredicateMetadata,
info *schedulercache.NodeInfo,
predicateFuncs map[string]algorithm.FitPredicate,
cache schedulercache.Cache,
nodeCache *equivalence.NodeCache,
queue SchedulingQueue,
alwaysCheckAllPredicates bool,
equivClass *equivalence.Class,
) (bool, []algorithm.PredicateFailureReason, error) {
var (
eCacheAvailable bool
failedPredicates []algorithm.PredicateFailureReason
)
podsAdded := false
// We run predicates twice in some cases. If the node has greater or equal priority
// nominated pods, we run them when those pods are added to meta and nodeInfo.
// If all predicates succeed in this pass, we run them again when these
// nominated pods are not added. This second pass is necessary because some
// predicates such as inter-pod affinity may not pass without the nominated pods.
// If there are no nominated pods for the node or if the first run of the
// predicates fail, we don't run the second pass.
// We consider only equal or higher priority pods in the first pass, because
// those are the current "pod" must yield to them and not take a space opened
// for running them. It is ok if the current "pod" take resources freed for
// lower priority pods.
// Requiring that the new pod is schedulable in both circumstances ensures that
// we are making a conservative decision: predicates like resources and inter-pod
// anti-affinity are more likely to fail when the nominated pods are treated
// as running, while predicates like pod affinity are more likely to fail when
// the nominated pods are treated as not running. We can't just assume the
// nominated pods are running because they are not running right now and in fact,
// they may end up getting scheduled to a different node.
for i := 0; i < 2; i++ {
metaToUse := meta
nodeInfoToUse := info
if i == 0 {
podsAdded, metaToUse, nodeInfoToUse = addNominatedPods(util.GetPodPriority(pod), meta, info, queue)
} else if !podsAdded || len(failedPredicates) != 0 {
break
}
// Bypass eCache if node has any nominated pods.
// TODO(bsalamat): consider using eCache and adding proper eCache invalidations
// when pods are nominated or their nominations change.
eCacheAvailable = equivClass != nil && nodeCache != nil && !podsAdded
for _, predicateKey := range predicates.Ordering() {
var (
fit bool
reasons []algorithm.PredicateFailureReason
err error
)
//TODO (yastij) : compute average predicate restrictiveness to export it as Prometheus metric
if predicate, exist := predicateFuncs[predicateKey]; exist {
if eCacheAvailable {
fit, reasons, err = nodeCache.RunPredicate(predicate, predicateKey, pod, metaToUse, nodeInfoToUse, equivClass, cache)
} else {
fit, reasons, err = predicate(pod, metaToUse, nodeInfoToUse)
}
if err != nil {
return false, []algorithm.PredicateFailureReason{}, err
}
if !fit {
// eCache is available and valid, and predicates result is unfit, record the fail reasons
failedPredicates = append(failedPredicates, reasons...)
// if alwaysCheckAllPredicates is false, short circuit all predicates when one predicate fails.
if !alwaysCheckAllPredicates {
glog.V(5).Infoln("since alwaysCheckAllPredicates has not been set, the predicate " +
"evaluation is short circuited and there are chances " +
"of other predicates failing as well.")
break
}
}
}
}
}
return len(failedPredicates) == 0, failedPredicates, nil
}
// PrioritizeNodes prioritizes the nodes by running the individual priority functions in parallel.
// Each priority function is expected to set a score of 0-10
// 0 is the lowest priority score (least preferred node) and 10 is the highest
// Each priority function can also have its own weight
// The node scores returned by the priority function are multiplied by the weights to get weighted scores
// All scores are finally combined (added) to get the total weighted scores of all nodes
func PrioritizeNodes(
pod *v1.Pod,
nodeNameToInfo map[string]*schedulercache.NodeInfo,
meta interface{},
priorityConfigs []algorithm.PriorityConfig,
nodes []*v1.Node,
extenders []algorithm.SchedulerExtender,
) (schedulerapi.HostPriorityList, error) {
// If no priority configs are provided, then the EqualPriority function is applied
// This is required to generate the priority list in the required format
if len(priorityConfigs) == 0 && len(extenders) == 0 {
result := make(schedulerapi.HostPriorityList, 0, len(nodes))
for i := range nodes {
hostPriority, err := EqualPriorityMap(pod, meta, nodeNameToInfo[nodes[i].Name])
if err != nil {
return nil, err
}
result = append(result, hostPriority)
}
return result, nil
}
var (
mu = sync.Mutex{}
wg = sync.WaitGroup{}
errs []error
)
appendError := func(err error) {
mu.Lock()
defer mu.Unlock()
errs = append(errs, err)
}
results := make([]schedulerapi.HostPriorityList, len(priorityConfigs), len(priorityConfigs))
for i, priorityConfig := range priorityConfigs {
if priorityConfig.Function != nil {
// DEPRECATED
wg.Add(1)
go func(index int, config algorithm.PriorityConfig) {
defer wg.Done()
var err error
results[index], err = config.Function(pod, nodeNameToInfo, nodes)
if err != nil {
appendError(err)
}
}(i, priorityConfig)
} else {
results[i] = make(schedulerapi.HostPriorityList, len(nodes))
}
}
processNode := func(index int) {
nodeInfo := nodeNameToInfo[nodes[index].Name]
var err error
for i := range priorityConfigs {
if priorityConfigs[i].Function != nil {
continue
}
results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
if err != nil {
appendError(err)
results[i][index].Host = nodes[index].Name
}
}
}
workqueue.Parallelize(16, len(nodes), processNode)
for i, priorityConfig := range priorityConfigs {
if priorityConfig.Reduce == nil {
continue
}
wg.Add(1)
go func(index int, config algorithm.PriorityConfig) {
defer wg.Done()
if err := config.Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {
appendError(err)
}
if glog.V(10) {
for _, hostPriority := range results[index] {
glog.Infof("%v -> %v: %v, Score: (%d)", pod.Name, hostPriority.Host, config.Name, hostPriority.Score)
}
}
}(i, priorityConfig)
}
// Wait for all computations to be finished.
wg.Wait()
if len(errs) != 0 {
return schedulerapi.HostPriorityList{}, errors.NewAggregate(errs)
}
// Summarize all scores.
result := make(schedulerapi.HostPriorityList, 0, len(nodes))
for i := range nodes {
result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
for j := range priorityConfigs {
result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
}
}
if len(extenders) != 0 && nodes != nil {
combinedScores := make(map[string]int, len(nodeNameToInfo))
for _, extender := range extenders {
if !extender.IsInterested(pod) {
continue
}
wg.Add(1)
go func(ext algorithm.SchedulerExtender) {
defer wg.Done()
prioritizedList, weight, err := ext.Prioritize(pod, nodes)
if err != nil {
// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
return
}
mu.Lock()
for i := range *prioritizedList {
host, score := (*prioritizedList)[i].Host, (*prioritizedList)[i].Score
combinedScores[host] += score * weight
}
mu.Unlock()
}(extender)
}
// wait for all go routines to finish
wg.Wait()
for i := range result {
result[i].Score += combinedScores[result[i].Host]
}
}
if glog.V(10) {
for i := range result {
glog.V(10).Infof("Host %s => Score %d", result[i].Host, result[i].Score)
}
}
return result, nil
}
// EqualPriorityMap is a prioritizer function that gives an equal weight of one to all nodes
func EqualPriorityMap(_ *v1.Pod, _ interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
node := nodeInfo.Node()
if node == nil {
return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
}
return schedulerapi.HostPriority{
Host: node.Name,
Score: 1,
}, nil
}
// pickOneNodeForPreemption chooses one node among the given nodes. It assumes
// pods in each map entry are ordered by decreasing priority.
// It picks a node based on the following criteria:
// 1. A node with minimum number of PDB violations.
// 2. A node with minimum highest priority victim is picked.
// 3. Ties are broken by sum of priorities of all victims.
// 4. If there are still ties, node with the minimum number of victims is picked.
// 5. If there are still ties, the first such node is picked (sort of randomly).
// The 'minNodes1' and 'minNodes2' are being reused here to save the memory
// allocation and garbage collection time.
func pickOneNodeForPreemption(nodesToVictims map[*v1.Node]*schedulerapi.Victims) *v1.Node {
if len(nodesToVictims) == 0 {
return nil
}
minNumPDBViolatingPods := math.MaxInt32
var minNodes1 []*v1.Node
lenNodes1 := 0
for node, victims := range nodesToVictims {
if len(victims.Pods) == 0 {
// We found a node that doesn't need any preemption. Return it!
// This should happen rarely when one or more pods are terminated between
// the time that scheduler tries to schedule the pod and the time that
// preemption logic tries to find nodes for preemption.
return node
}
numPDBViolatingPods := victims.NumPDBViolations
if numPDBViolatingPods < minNumPDBViolatingPods {
minNumPDBViolatingPods = numPDBViolatingPods
minNodes1 = nil
lenNodes1 = 0
}
if numPDBViolatingPods == minNumPDBViolatingPods {
minNodes1 = append(minNodes1, node)
lenNodes1++
}
}
if lenNodes1 == 1 {
return minNodes1[0]
}
// There are more than one node with minimum number PDB violating pods. Find
// the one with minimum highest priority victim.
minHighestPriority := int32(math.MaxInt32)
var minNodes2 = make([]*v1.Node, lenNodes1)
lenNodes2 := 0
for i := 0; i < lenNodes1; i++ {
node := minNodes1[i]
victims := nodesToVictims[node]
// highestPodPriority is the highest priority among the victims on this node.
highestPodPriority := util.GetPodPriority(victims.Pods[0])
if highestPodPriority < minHighestPriority {
minHighestPriority = highestPodPriority
lenNodes2 = 0
}
if highestPodPriority == minHighestPriority {
minNodes2[lenNodes2] = node
lenNodes2++
}
}
if lenNodes2 == 1 {
return minNodes2[0]
}
// There are a few nodes with minimum highest priority victim. Find the
// smallest sum of priorities.
minSumPriorities := int64(math.MaxInt64)
lenNodes1 = 0
for i := 0; i < lenNodes2; i++ {
var sumPriorities int64
node := minNodes2[i]
for _, pod := range nodesToVictims[node].Pods {
// We add MaxInt32+1 to all priorities to make all of them >= 0. This is
// needed so that a node with a few pods with negative priority is not
// picked over a node with a smaller number of pods with the same negative
// priority (and similar scenarios).
sumPriorities += int64(util.GetPodPriority(pod)) + int64(math.MaxInt32+1)
}
if sumPriorities < minSumPriorities {
minSumPriorities = sumPriorities
lenNodes1 = 0
}
if sumPriorities == minSumPriorities {
minNodes1[lenNodes1] = node
lenNodes1++
}
}
if lenNodes1 == 1 {
return minNodes1[0]
}
// There are a few nodes with minimum highest priority victim and sum of priorities.
// Find one with the minimum number of pods.
minNumPods := math.MaxInt32
lenNodes2 = 0
for i := 0; i < lenNodes1; i++ {
node := minNodes1[i]
numPods := len(nodesToVictims[node].Pods)
if numPods < minNumPods {
minNumPods = numPods
lenNodes2 = 0
}
if numPods == minNumPods {
minNodes2[lenNodes2] = node
lenNodes2++
}
}
// At this point, even if there are more than one node with the same score,
// return the first one.
if lenNodes2 > 0 {
return minNodes2[0]
}
glog.Errorf("Error in logic of node scoring for preemption. We should never reach here!")
return nil
}
// selectNodesForPreemption finds all the nodes with possible victims for
// preemption in parallel.
func selectNodesForPreemption(pod *v1.Pod,
nodeNameToInfo map[string]*schedulercache.NodeInfo,
potentialNodes []*v1.Node,
predicates map[string]algorithm.FitPredicate,
metadataProducer algorithm.PredicateMetadataProducer,
queue SchedulingQueue,
pdbs []*policy.PodDisruptionBudget,
) (map[*v1.Node]*schedulerapi.Victims, error) {
nodeToVictims := map[*v1.Node]*schedulerapi.Victims{}
var resultLock sync.Mutex
// We can use the same metadata producer for all nodes.
meta := metadataProducer(pod, nodeNameToInfo)
checkNode := func(i int) {
nodeName := potentialNodes[i].Name
var metaCopy algorithm.PredicateMetadata
if meta != nil {
metaCopy = meta.ShallowCopy()
}
pods, numPDBViolations, fits := selectVictimsOnNode(pod, metaCopy, nodeNameToInfo[nodeName], predicates, queue, pdbs)
if fits {
resultLock.Lock()
victims := schedulerapi.Victims{
Pods: pods,
NumPDBViolations: numPDBViolations,
}
nodeToVictims[potentialNodes[i]] = &victims
resultLock.Unlock()
}
}
workqueue.Parallelize(16, len(potentialNodes), checkNode)
return nodeToVictims, nil
}
// filterPodsWithPDBViolation groups the given "pods" into two groups of "violatingPods"
// and "nonViolatingPods" based on whether their PDBs will be violated if they are
// preempted.
// This function is stable and does not change the order of received pods. So, if it
// receives a sorted list, grouping will preserve the order of the input list.
func filterPodsWithPDBViolation(pods []interface{}, pdbs []*policy.PodDisruptionBudget) (violatingPods, nonViolatingPods []*v1.Pod) {
for _, obj := range pods {
pod := obj.(*v1.Pod)
pdbForPodIsViolated := false
// A pod with no labels will not match any PDB. So, no need to check.
if len(pod.Labels) != 0 {
for _, pdb := range pdbs {
if pdb.Namespace != pod.Namespace {
continue
}
selector, err := metav1.LabelSelectorAsSelector(pdb.Spec.Selector)
if err != nil {
continue
}
// A PDB with a nil or empty selector matches nothing.
if selector.Empty() || !selector.Matches(labels.Set(pod.Labels)) {
continue
}
// We have found a matching PDB.
if pdb.Status.PodDisruptionsAllowed <= 0 {
pdbForPodIsViolated = true
break
}
}
}
if pdbForPodIsViolated {
violatingPods = append(violatingPods, pod)
} else {
nonViolatingPods = append(nonViolatingPods, pod)
}
}
return violatingPods, nonViolatingPods
}
// selectVictimsOnNode finds minimum set of pods on the given node that should
// be preempted in order to make enough room for "pod" to be scheduled. The
// minimum set selected is subject to the constraint that a higher-priority pod
// is never preempted when a lower-priority pod could be (higher/lower relative
// to one another, not relative to the preemptor "pod").
// The algorithm first checks if the pod can be scheduled on the node when all the
// lower priority pods are gone. If so, it sorts all the lower priority pods by
// their priority and then puts them into two groups of those whose PodDisruptionBudget
// will be violated if preempted and other non-violating pods. Both groups are
// sorted by priority. It first tries to reprieve as many PDB violating pods as
// possible and then does them same for non-PDB-violating pods while checking
// that the "pod" can still fit on the node.
// NOTE: This function assumes that it is never called if "pod" cannot be scheduled
// due to pod affinity, node affinity, or node anti-affinity reasons. None of
// these predicates can be satisfied by removing more pods from the node.
func selectVictimsOnNode(
pod *v1.Pod,
meta algorithm.PredicateMetadata,
nodeInfo *schedulercache.NodeInfo,
fitPredicates map[string]algorithm.FitPredicate,
queue SchedulingQueue,
pdbs []*policy.PodDisruptionBudget,
) ([]*v1.Pod, int, bool) {
potentialVictims := util.SortableList{CompFunc: util.HigherPriorityPod}
nodeInfoCopy := nodeInfo.Clone()
removePod := func(rp *v1.Pod) {
nodeInfoCopy.RemovePod(rp)
if meta != nil {
meta.RemovePod(rp)
}
}
addPod := func(ap *v1.Pod) {
nodeInfoCopy.AddPod(ap)
if meta != nil {
meta.AddPod(ap, nodeInfoCopy)
}
}
// As the first step, remove all the lower priority pods from the node and
// check if the given pod can be scheduled.
podPriority := util.GetPodPriority(pod)
for _, p := range nodeInfoCopy.Pods() {
if util.GetPodPriority(p) < podPriority {
potentialVictims.Items = append(potentialVictims.Items, p)
removePod(p)
}
}
potentialVictims.Sort()
// If the new pod does not fit after removing all the lower priority pods,
// we are almost done and this node is not suitable for preemption. The only condition
// that we should check is if the "pod" is failing to schedule due to pod affinity
// failure.
// TODO(bsalamat): Consider checking affinity to lower priority pods if feasible with reasonable performance.
if fits, _, err := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, nil, nil, queue, false, nil); !fits {
if err != nil {
glog.Warningf("Encountered error while selecting victims on node %v: %v", nodeInfo.Node().Name, err)
}
return nil, 0, false
}