Skip to content

Code for ICML 2021 paper “Lenient Regret and Good-Action Identification in Gaussian Process Bandits”

License

Notifications You must be signed in to change notification settings

caitree/GoodAction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Good-Action Identification

Code for ICML 2021 paper Lenient Regret and Good-Action Identification in Gaussian Process Bandits

Copyright by the authors: Xu Cai, Selwyn Gomes and Jonathan Scarlett

Dependencies

  • Python 3
  • NumPy
  • SciPy
  • Scikit-Learn
  • Matplotlib
  • GPy
  • PyTorch (for quasi-random sequences)
  • pybox2d & pygame (for robot pushing)
  • xgboost (for XGBoost)

The noisy/noiseless experiment on synthetic/real-world functions

Input arguments for main.py:

  • function: Specify the function name; See good_action/utils.py for details
  • noisy: Noisy or noiseless observation
  • epsilon: The good-action threshold; Float value

Output:

  • log file: Running logs
  • query histories: .npy file saving queried points and values

For example:

  • Testing on the noiseless 3D robot pushing function
python main.py robot3 noiseless 4.5

Visualization: Run plot.ipynb

The lenient regret experiment on synthetic GP function

Input arguments for lenient.py:

  • epsilon: The good-action threshold; Float value; Default=0.9

Output:

  • lenient and standard regrets: .npy file

For example:

python lenient.py 0.9

Visualization: Run plot_lenient.ipynb

About

Code for ICML 2021 paper “Lenient Regret and Good-Action Identification in Gaussian Process Bandits”

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published