Skip to content

calmiLovesAI/Segmentation.pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Segmentation.pytorch

1. Installation

1.1 Prepare the Datasets

Put the VOC2012 dataset in the following path:

data
  |---VOCdevkit
       |---VOC2012
            |-------Annotations
            |-------Imagesets
            |-------JPEGImages
            |-------SegmentationClass
            |-------SegmentationObject

Put the Semantic Boundaries Dataset in the following path:

data
  |---SBD
       |---cls
       |---img
       |---inst
       |---train.txt
       |---val.txt

1.2 Train

  • Train on Semantic Boundaries Dataset (DeeplabV3+ for example)
python train.py --cfg experiments/deeplabv3plus_sbd.yaml

During training, you can use the command

tensorboard --logdir=runs

in the console to enter the tensorboard panel to visualize the training process.

  • Resume training
python train.py --cfg experiments/deeplabv3plus_sbd.yaml --ckpt checkpoint_filepath

1.3 Evaluate

  • Evaluate on Semantic Boundaries Dataset (DeeplabV3+ for example)
python train.py --cfg experiments/deeplabv3plus_sbd.yaml --mode valid --ckpt outputs/DeeplabV3Plus_SBD_weights.pth

1.4 Test

  • Test on single image or several images (DeeplabV3+ for example)
python test.py --cfg experiments/deeplabv3plus_sbd.yaml --ckpt outputs/DeeplabV3Plus_SBD_weights.pth

2. Results

3. Deployment

Acknowledgments

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages