A Ruby client that tries to match Redis' API one-to-one, while still providing an idiomatic interface.
See RubyDoc.info for the API docs of the latest published gem.
Install with:
$ gem install redis
You can connect to Redis by instantiating the Redis
class:
require "redis"
redis = Redis.new
This assumes Redis was started with a default configuration, and is
listening on localhost
, port 6379. If you need to connect to a remote
server or a different port, try:
redis = Redis.new(host: "10.0.1.1", port: 6380, db: 15)
You can also specify connection options as a redis://
URL:
redis = Redis.new(url: "redis://:p4ssw0rd@10.0.1.1:6380/15")
The client expects passwords with special chracters to be URL-encoded (i.e.
CGI.escape(password)
).
To connect to Redis listening on a Unix socket, try:
redis = Redis.new(path: "/tmp/redis.sock")
To connect to a password protected Redis instance, use:
redis = Redis.new(password: "mysecret")
To connect a Redis instance using ACL, use:
redis = Redis.new(username: 'myname', password: 'mysecret')
The Redis class exports methods that are named identical to the commands
they execute. The arguments these methods accept are often identical to
the arguments specified on the Redis website. For
instance, the SET
and GET
commands can be called like this:
redis.set("mykey", "hello world")
# => "OK"
redis.get("mykey")
# => "hello world"
All commands, their arguments, and return values are documented and available on RubyDoc.info.
The client does not provide connection pooling. Each Redis
instance
has one and only one connection to the server, and use of this connection
is protected by a mutex.
As such it is heavilly recommended to use the connection_pool
gem, e.g.:
module MyApp
def self.redis
@redis ||= ConnectionPool::Wrapper.new do
Redis.new(url: ENV["REDIS_URL"])
end
end
end
MyApp.redis.incr("some-counter")
The client is able to perform automatic failover by using Redis Sentinel. Make sure to run Redis 2.8+ if you want to use this feature.
To connect using Sentinel, use:
SENTINELS = [{ host: "127.0.0.1", port: 26380 },
{ host: "127.0.0.1", port: 26381 }]
redis = Redis.new(name: "mymaster", sentinels: SENTINELS, role: :master)
-
The master name identifies a group of Redis instances composed of a master and one or more slaves (
mymaster
in the example). -
It is possible to optionally provide a role. The allowed roles are
master
andslave
. When the role isslave
, the client will try to connect to a random slave of the specified master. If a role is not specified, the client will connect to the master. -
When using the Sentinel support you need to specify a list of sentinels to connect to. The list does not need to enumerate all your Sentinel instances, but a few so that if one is down the client will try the next one. The client is able to remember the last Sentinel that was able to reply correctly and will use it for the next requests.
If you want to authenticate Sentinel itself, you must specify the password
option per instance.
SENTINELS = [{ host: '127.0.0.1', port: 26380, password: 'mysecret' },
{ host: '127.0.0.1', port: 26381, password: 'mysecret' }]
redis = Redis.new(name: 'mymaster', sentinels: SENTINELS, role: :master)
Also the name can be passed as an url:
redis = Redis.new(name: "redis://mymaster", sentinels: SENTINELS, role: :master)
Clustering. is supported via the redis-clustering
gem.
When multiple commands are executed sequentially, but are not dependent, the calls can be pipelined. This means that the client doesn't wait for reply of the first command before sending the next command. The advantage is that multiple commands are sent at once, resulting in faster overall execution.
The client can be instructed to pipeline commands by using the
#pipelined
method. After the block is executed, the client sends all
commands to Redis and gathers their replies. These replies are returned
by the #pipelined
method.
redis.pipelined do |pipeline|
pipeline.set "foo", "bar"
pipeline.incr "baz"
end
# => ["OK", 1]
Commands must be called on the yielded objects. If you call methods on the original client objects from inside a pipeline, they will be sent immediately:
redis.pipelined do |pipeline|
pipeline.set "foo", "bar"
redis.incr "baz" # => 1
end
# => ["OK"]
You can use MULTI/EXEC
to run a number of commands in an atomic
fashion. This is similar to executing a pipeline, but the commands are
preceded by a call to MULTI
, and followed by a call to EXEC
. Like
the regular pipeline, the replies to the commands are returned by the
#multi
method.
redis.multi do |transaction|
transaction.set "foo", "bar"
transaction.incr "baz"
end
# => ["OK", 1]
Replies to commands in a pipeline can be accessed via the futures they
emit. All calls on the pipeline object return a
Future
object, which responds to the #value
method. When the
pipeline has successfully executed, all futures are assigned their
respective replies and can be used.
set = incr = nil
redis.pipelined do |pipeline|
set = pipeline.set "foo", "bar"
incr = pipeline.incr "baz"
end
set.value
# => "OK"
incr.value
# => 1
In general, if something goes wrong you'll get an exception. For example, if
it can't connect to the server a Redis::CannotConnectError
error will be raised.
begin
redis.ping
rescue Redis::BaseError => e
e.inspect
# => #<Redis::CannotConnectError: Timed out connecting to Redis on 10.0.1.1:6380>
e.message
# => Timed out connecting to Redis on 10.0.1.1:6380
end
See lib/redis/errors.rb for information about what exceptions are possible.
The client allows you to configure connect, read, and write timeouts.
Passing a single timeout
option will set all three values:
Redis.new(:timeout => 1)
But you can use specific values for each of them:
Redis.new(
:connect_timeout => 0.2,
:read_timeout => 1.0,
:write_timeout => 0.5
)
All timeout values are specified in seconds.
When using pub/sub, you can subscribe to a channel using a timeout as well:
redis = Redis.new(reconnect_attempts: 0)
redis.subscribe_with_timeout(5, "news") do |on|
on.message do |channel, message|
# ...
end
end
If no message is received after 5 seconds, the client will unsubscribe.
By default, this gem will only retry a connection once and then fail, but
the client allows you to configure how many reconnect_attempts
it should
complete before declaring a connection as failed.
Redis.new(reconnect_attempts: 0)
Redis.new(reconnect_attempts: 3)
If you wish to wait between reconnection attempts, you can instead pass a list of durations:
Redis.new(reconnect_attempts: [
0, # retry immediately
0.25, # retry a second time after 250ms
1, # retry a third and final time after another 1s
])
If you wish to disable reconnection only for some commands, you can use
disable_reconnection
:
redis.get("some-key") # this may be retried
redis.disable_reconnection do
redis.incr("some-counter") # this won't be retried.
end
To enable SSL support, pass the :ssl => true
option when configuring the
Redis client, or pass in :url => "rediss://..."
(like HTTPS for Redis).
You will also need to pass in an :ssl_params => { ... }
hash used to
configure the OpenSSL::SSL::SSLContext
object used for the connection:
redis = Redis.new(
:url => "rediss://:p4ssw0rd@10.0.1.1:6381/15",
:ssl_params => {
:ca_file => "/path/to/ca.crt"
}
)
The options given to :ssl_params
are passed directly to the
OpenSSL::SSL::SSLContext#set_params
method and can be any valid attribute
of the SSL context. Please see the OpenSSL::SSL::SSLContext documentation
for all of the available attributes.
Here is an example of passing in params that can be used for SSL client certificate authentication (a.k.a. mutual TLS):
redis = Redis.new(
:url => "rediss://:p4ssw0rd@10.0.1.1:6381/15",
:ssl_params => {
:ca_file => "/path/to/ca.crt",
:cert => OpenSSL::X509::Certificate.new(File.read("client.crt")),
:key => OpenSSL::PKey::RSA.new(File.read("client.key"))
}
)
-
inherit_socket: true
: disable safety check that prevents a forked child from sharing a socket with its parent; this is potentially useful in order to mitigate connection churn when:- many short-lived forked children of one process need to talk to redis, AND
- your own code prevents the parent process from using the redis connection while a child is alive
Improper use of
inherit_socket
will result in corrupted and/or incorrect responses.
By default, redis-rb uses Ruby's socket library to talk with Redis.
The hiredis driver uses the connection facility of hiredis-rb. In turn, hiredis-rb is a binding to the official hiredis client library. It optimizes for speed, at the cost of portability. Because it is a C extension, JRuby is not supported (by default).
It is best to use hiredis when you have large replies (for example:
LRANGE
, SMEMBERS
, ZRANGE
, etc.) and/or use big pipelines.
In your Gemfile, include hiredis-client
:
gem "redis"
gem "hiredis-client"
If your application doesn't call Bundler.require
, you may have
to require it explictly:
require "hiredis-client"
This makes the hiredis driver the default.
If you want to be certain hiredis is being used, when instantiating the client object, specify hiredis:
redis = Redis.new(driver: :hiredis)
This library is tested against recent Ruby and Redis versions. Check Github Actions for the exact versions supported.
- async-redis — An async compatible Redis client.
Several people contributed to redis-rb, but we would like to especially mention Ezra Zygmuntowicz. Ezra introduced the Ruby community to many new cool technologies, like Redis. He wrote the first version of this client and evangelized Redis in Rubyland. Thank you, Ezra.
Fork the project and send pull requests.