Deep Learning style transfert for nuclei enhancement : https://www.scitepress.org/Papers/2023/116235/116235.pdf
First version : https://www.biorxiv.org/content/10.1101/2022.10.27.514030v1.article-info
- Linux or macOS
- Python 3
- CPU or NVIDIA GPU + CUDA CuDNN
- Clone this repo:
git clone https://github.com/ebouilhol/SalienceNet.git
cd SalienceNet
- Install PyTorch and 0.4+ and other dependencies (e.g., torchvision, visdom and dominate).
- For pip users :
pip install -r requirements.txt
. - For Conda users, you can create a new Conda environment using :
conda env create -f env.yaml
.
- For pip users :
SalienceNet pre-trained model V0 is available on zenodo : https://zenodo.org/record/7266921/files/salienceNet.zip?download=1
Once downloaded, move it to /SalienceNet/checkpoints and unzip it.
To create a dataset please use the following architecture :
└── dataset_folder
├── testA
├── testB
├── trainA
└── trainB
A being the source style dataset and B the target style dataset.
A pretrained model is available, to use it for prediction use the model name salienceNet :
/!\ The pretrained model is trained on grayscale images with 1 channel, do not forget to use "--input_nc 1 --output_nc 1" as shown below.
#!./scripts/test_cyclegan.sh
python test.py --gpu_ids x --dataroot datasets/dataset_example/ --model cycle_gan --input_nc 1 --output_nc 1 --name salienceNet
-
To view training results and loss plots, run
python -m visdom.server
and click the URL http://localhost:8097. -
To log training progress and test images to W&B dashboard, set the
--use_wandb
flag with train and test scrip -
To train a new model:
#!./scripts/train_cyclegan.sh
python train.py --gpu_ids x --dataroot datasets/dataset_example/ --n_epochs xxx --model cycle_gan --gan_mode LSSSIMGRAD --name modelname --wcrit1 0.2 --wcrit2 0.2 --wcrit3 0.6
To see more intermediate results, check out ./checkpoints/maps_cyclegan/web/index.html
.
- Test the model:
#!./scripts/test_cyclegan.sh
python test.py --gpu_ids x --dataroot datasets/dataset_example/ --model cycle_gan --name modelname
- The test results will be saved to a html file here:
./results/maps_cyclegan/latest_test/index.html
.
Our code is inspired by pytorch-cycleGAN. For more information regarding the possible test and train option please refer to this github.