Skip to content

cedesu/SORL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stylized Offline Reinforcement Learning: Extracting Diverse High-Quality Behaviors from Heterogeneous Datasets

Code used for the paper "Stylized Offline Reinforcement Learning: Extracting Diverse High-Quality Behaviors from Heterogeneous Datasets". The code is adapted from https://github.com/joonaspu/video-game-behavioural-cloning.

Atari-HEAD dataset can be downlaoded at https://zenodo.org/record/3451402. The ATARI_HEAD_DIR should point at a directory that has subdirectories for each game (i.e. montezuma_revenge, ms_pacman and space_invaders). The .tar.bz2 archives inside each game's directory should also be extracted.

First train the dqn model for the usage of advantage function.

python3 train_dqn.py ATARI_HEAD_DIR game models_atari_head/dqn_models/space_invaders --epochs 10 --workers 16 --framestack 2 --l2 0.00001 --save-freq 1 --merge --atari-head --env_id SpaceInvaders-v0

Then train the SORL algorithm.

python3 train_style.py ATARI_HEAD_DIR game models_atari_head/space_invaders --epochs 60 --workers 16 --framestack 2 --l2 0.00001 --save-freq 1 --merge --atari-head --env_id SpaceInvaders-v0 --load_ppo ./models_atari_head/dqn_models/space_invaders_10.pt

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages