git clone https://github.com/chautruonglong/NHOM_14.git
-
Requires:
Linux OS Window OS Python 3.6.* 3.6.* SVM KNN FAISS Note: You should use Anaconda tool to fast setup enviroment
-
Move to dir "NHOM_14/Recogniton-AI/Face-Recognition/":
cd NHOM_14/Recogniton-AI/Face-Recognition/
-
Crawl data:
- Using these modules in folder "NHOM_14/Recogniton-AI/Data-Processing" to crawl face images
- Put them in folder "NHOM_14/Recogniton-AI/Face-Recognition/dataset/raw/"
-
Install packages:
pip install -r requirements/requirements_pip.txt
conda install --file requirements/requirements_conda.txt
-
Preprocessing data:
python src/preprocessing.py
-
Training Classifier Model:
python src/training.py
-
Test:
Option Command Webcam python src/webcam.py
python src/webcam_faiss.pyVideo python src/video.py
python src/video_faiss.pyImage python src/image.py
python src/image_faiss.py
-
Requires:
Linux OS Window OS Python 3.6.* 3.6.* SVM KNN FAISS Note: You should use Anaconda tool to fast setup enviroment
-
Move to dir "NHOM_14/Backend-API/backend_api/":
cd NHOM_14/Backend-API/backend_api/
-
Install packages:
pip install -r requirements.txt
-
Run server:
Note: First, create database follow name "automatic_attendance" using MySQL (XAMPP or Main Website)
python manage.py runserver 0.0.0.0:8000
Note: Using SSH protocol to remote raspberry
-
Move to dir "NHOM_14/Raspberry-Camera/raspberry/":
cd NHOM_14/Raspberry-Camera/raspberry/
-
Install packages:
pip install -r requirements.txt
-
Run raspberry server:
python manage.py runserver 0.0.0.0:8000
-
Requires:
OS Window OS IDEs Visual Studio 2019 Devices Virtual Machine or Mobile Android API API 27 -
Install Visual Studio IDE:
-
Open folder "NHOM_14/Mobile-App/Mobile/AutoAttendant.sln" with Visual Studio IDE
-
Build it on Virtual Machine or Mobile Device