|
| 1 | +package com.cheehwatang.leetcode; |
| 2 | + |
| 3 | +// Time Complexity : O(n + m), |
| 4 | +// where 'n' is the length of 'nums1', and 'm' is the length of 'nums2'. |
| 5 | +// We traverse 'nums1' once, and 'nums2' once. |
| 6 | +// |
| 7 | +// Space Complexity : O(1), |
| 8 | +// as the auxiliary space used is independent of the input. |
| 9 | + |
| 10 | +public class EqualSumArraysWithMinimumNumberOfOperations_Counting { |
| 11 | + |
| 12 | + // Approach: |
| 13 | + // Using counting array to keep track of the frequency of both arrays. |
| 14 | + // Since both array's elements can be manipulated, the counting array records the inversion of the second array. |
| 15 | + // Example: nums1 = [1,1], nums2 = [6,5,4], counting array = [3,1,1,0,0,0]. |
| 16 | + // This is because, to make the sum equal, in this example, |
| 17 | + // we can either increase the 1 in 'nums1' to 6 or decrease the 6 in 'nums2' to 1. |
| 18 | + // In both cases, the 'difference' is decreased by 5. |
| 19 | + // Once we have the counting array, and the sum of both arrays, |
| 20 | + // we get change the smallest number in the counting array first as it has the largest impact on the 'difference' |
| 21 | + // (Greedy Approach). |
| 22 | + |
| 23 | + public int minOperations(int[] nums1, int[] nums2) { |
| 24 | + // Case where it is impossible to get equal sum, |
| 25 | + // when one array is longer than 6 multiples of the second array length. |
| 26 | + if ((nums1.length * 6 < nums2.length) || (nums1.length > nums2.length * 6)) return -1; |
| 27 | + |
| 28 | + // Use the countArray to record the frequency of each number in 'nums1', |
| 29 | + // as well as the inversion of the numbers in 'nums2'. |
| 30 | + // Additionally, record the sum of each array. |
| 31 | + int[] countArray = new int[7]; |
| 32 | + int sumNum1 = 0; |
| 33 | + for (int number : nums1) { |
| 34 | + countArray[number]++; |
| 35 | + sumNum1 += number; |
| 36 | + } |
| 37 | + int sumNum2 = 0; |
| 38 | + for (int number : nums2) { |
| 39 | + countArray[7 - number]++; |
| 40 | + sumNum2 += number; |
| 41 | + } |
| 42 | + |
| 43 | + int count = 0; |
| 44 | + int difference = sumNum1 - sumNum2; |
| 45 | + // In both cases, from the number with the largest impact (1 if difference is negative, 6 if difference is positive), |
| 46 | + // the operations to make is either: |
| 47 | + // - all the frequency of the number (with remainders of the difference), or |
| 48 | + // - the remainders of the difference divided by the number. |
| 49 | + if (difference < 0) { |
| 50 | + for (int i = 1; i < 6; i++) { |
| 51 | + int operations = Math.min(countArray[i], -difference / (6 - i) + (-difference % (6 - i) == 0 ? 0 : 1)); |
| 52 | + difference += operations * (6 - i); |
| 53 | + count += operations; |
| 54 | + if (difference >= 0) break; |
| 55 | + } |
| 56 | + } else if (difference > 0) { |
| 57 | + for (int i = 6; i > 1; i--) { |
| 58 | + int operations = Math.min(countArray[i], difference / (i - 1) + (difference % (i - 1) == 0 ? 0 : 1)); |
| 59 | + difference -= operations * (i - 1); |
| 60 | + count += operations; |
| 61 | + if (difference <= 0) break; |
| 62 | + } |
| 63 | + } |
| 64 | + return count; |
| 65 | + } |
| 66 | +} |
0 commit comments