-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathС2W4_Градиентный_бустинг.ipynb
632 lines (632 loc) · 59.2 KB
/
С2W4_Градиентный_бустинг.ipynb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "С2W4 Градиентный бустинг.ipynb",
"version": "0.3.2",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "lQy99l3tiUjO",
"colab_type": "text"
},
"source": [
"# Постановка задачи\n",
"\n",
"В рамках текущего задания необходимо реализовать упрощенную модель градиентного бустинга, придерживаясь ряда условий, описанных в ТЗ, в частности это долен быть градиентный бустинг над регрессионными деревьями для случая квадратичной функции потерь. \n",
"Проверку нужно произвести используя классический бостонский датасет из библиотеки sklearn, а полученные результаты соизмерить с классической линейной регрессией\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ujwbtM-wixIA",
"colab_type": "text"
},
"source": [
"## Подготовка данных и окружения"
]
},
{
"cell_type": "code",
"metadata": {
"id": "rchEi0MRiM2S",
"colab_type": "code",
"colab": {}
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.datasets import load_boston\n",
"from sklearn.tree import DecisionTreeRegressor\n",
"from sklearn.metrics import mean_squared_error\n",
"from sklearn.linear_model import LinearRegression\n",
"from xgboost import XGBRegressor \n",
"from sklearn.model_selection import cross_val_score\n",
"import matplotlib.pyplot as plt\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "CjeU2z3omaH8",
"colab_type": "code",
"outputId": "32db2a03-c9af-4911-dd82-36b035d7edd3",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"df = load_boston()\n",
"X = df.data\n",
"y = df.target\n",
"size = len(df.target)\n",
"print(size, size == len(df.target))"
],
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"text": [
"506 True\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MtQohrvyuyu3",
"colab_type": "text"
},
"source": [
"Разобъем данные на выборки для обучения и тестирования, в сооотношении 75/25 %, с сохранением порядка"
]
},
{
"cell_type": "code",
"metadata": {
"id": "6fSzd2hlu7It",
"colab_type": "code",
"outputId": "cdd6e6e1-08e4-498f-bb0a-6bbbea7804e5",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
}
},
"source": [
"X_train, X_test, y_train, y_test = (\n",
" X[:int(0.75*size)], X[int(0.75*size):],\n",
" y[:int(0.75*size)], y[int(0.75*size):])\n",
"\n",
"print(X_train.shape, y_train.shape)\n",
"print(X_test.shape, y_test.shape)"
],
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"(379, 13) (379,)\n",
"(127, 13) (127,)\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KYSOUKd6LiuK",
"colab_type": "text"
},
"source": [
"Аналогично минимизации функций методом градиентного спуска, в градиентном бустинге мы подправляем композицию, изменяя алгоритм в направлении антиградиента ошибки. \n",
"Воспользуйтемся формулой из лекций, задающей ответы на обучающей выборке, на которые нужно обучать новый алгоритм (фактически это лишь чуть более подробно расписанный градиент от ошибки), и получите частный ее случай, если функция потерь L - квадрат отклонения ответа композиции a(x) от правильного ответа y на данном x\n",
"\n",
"$$\\sum_{i=0}^{l} \\mathbb{L}(y_i, a_{N-1}(x_i) + \\xi_i) = \\sum_{i=0}^{l} (y_i - (a_{N-1}(x_i) + \\xi_i))^2 \\to \\min_{\\xi}$$ \n",
"\n",
"$$\\xi_i = 2(y_i - a_{N-1}(x_i).$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GCjZuiJ2n9oB",
"colab_type": "text"
},
"source": [
"## Реализация алгоритма\n",
"Определим функцию, которая будет вычислять прогноз построенной композиции деревьев на выборке `X` и функцию расчета градиента (согласно условию - 2 не берем в расчет)"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0te3DaLRoQRE",
"colab_type": "code",
"colab": {}
},
"source": [
"def gbm_predict(X):\n",
" '''\n",
" base_algorithms_list - список с базовыми алгоритмами\n",
" coefficients_list - список с коэффициентами перед алгоритмами\n",
" '''\n",
" return [sum([\n",
" coeff*algo.predict([x])[0] for algo, coeff\n",
" in zip(base_algorithms_list, coefficients_list)\n",
" ]) for x in X]\n",
"\n",
"\n",
"def get_grad():\n",
" return [y - a for a, y in zip(gbm_predict(X_train), y_train)]"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "-yRbHeH3t-i5",
"colab_type": "text"
},
"source": [
"В качестве базового алгоритма для градиентного бустинга будет использовано регресионное дерево решений из библиотеки sklearn. Воспроизводимость ответов на платформе coursera предписывает установить для него параметры `max_depth=5` и `random_state=42` \n",
"В бустинге зачастую используются сотни и тысячи деревьев, но мы ограничимся 50, чтобы алгоритм работал быстрее, и его было проще отлаживать (т.к. цель задания разобраться, как работает метод) \n",
"\n",
"Определим ф-цию, обучающую 50 базовых алгоритмов. \n",
"\n",
"Попробуем при этом для начала всегда брать коэффициент равным 0.9. Обычно оправдано выбирать коэффициент значительно меньшим - порядка 0.05 или 0.1, но т.к. в нашем учебном примере на стандартном датасете будет всего 50 деревьев, возьмем для начала шаг побольше."
]
},
{
"cell_type": "code",
"metadata": {
"id": "SddL9iA-x1nG",
"colab_type": "code",
"colab": {}
},
"source": [
"base_algorithms_list, coefficients_list = [], []\n",
"\n",
"def gboost_fit(coef, minimize_coef=False):\n",
" for i in range(50):\n",
" coef = coef/(1.0 + i) if minimize_coef else coef\n",
" base_model = DecisionTreeRegressor(max_depth=5, random_state=42)\n",
" base_model.fit(X_train, get_grad())\n",
" base_algorithms_list.append(base_model)\n",
" coefficients_list.append(coef)\n",
"\n",
"gboost_fit(0.9) "
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "6xU_0iokCn9z",
"colab_type": "code",
"outputId": "78807d57-d61c-4bc8-f96d-2d0c56c438b8",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"def get_RMSE():\n",
" MSE = mean_squared_error(\n",
" y_test,\n",
" gbm_predict(X_test)\n",
" )\n",
" return MSE**0.5\n",
"\n",
"\n",
"get_RMSE()"
],
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"5.455565103009402"
]
},
"metadata": {
"tags": []
},
"execution_count": 6
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "t3NllaOhoUn1",
"colab_type": "text"
},
"source": [
"А теперь попробуем уменьшать вес перед каждым алгоритмом с каждой следующей итерацией"
]
},
{
"cell_type": "code",
"metadata": {
"id": "inuL0K3hNCmb",
"colab_type": "code",
"colab": {}
},
"source": [
"base_algorithms_list, coefficients_list = [], [] # Переопределим\n",
"gboost_fit(0.9, True)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "6JY-UXsBOCvP",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"outputId": "a3accc8b-924f-4ebd-b019-857f59e61f6c"
},
"source": [
"get_RMSE()"
],
"execution_count": 8,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"4.409771514361549"
]
},
"metadata": {
"tags": []
},
"execution_count": 8
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uaScU15JRc-a",
"colab_type": "text"
},
"source": [
"## Оценка путем сравнения с другими регресионными моделями \n",
"Сравним реализованный алгоритм с тем, что предлагает библиотека XGBoost "
]
},
{
"cell_type": "code",
"metadata": {
"id": "YIAzpo0VSFX0",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"outputId": "da340a10-10d0-4b64-8c74-da6ea941bddd"
},
"source": [
"xbg = XGBRegressor(n_estimators=50, max_depth=5)\n",
"xbg.fit(X_train, y_train)\n",
"xbg_pred = xbg.predict(X_test)\n",
"mean_squared_error(y_test, xbg_pred)**0.5"
],
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": [
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"4.923855118818414"
]
},
"metadata": {
"tags": []
},
"execution_count": 9
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "f1gnm-PqVXTE",
"colab_type": "text"
},
"source": [
"Получили соизмеримую величину ошибки, отчасти из-за некоторой синтетичности в реализации.\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "9-P_k0_oWHus",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"outputId": "ab647698-4b9f-4918-b1ef-708beea8ca0c"
},
"source": [
"linear_model = LinearRegression()\n",
"linear_model.fit(X_train, y_train)\n",
"linear_model_pred = linear_model.predict(X_test)\n",
"mean_squared_error(y_test, linear_model_pred)**0.5"
],
"execution_count": 10,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"8.254979753549401"
]
},
"metadata": {
"tags": []
},
"execution_count": 10
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "y2lRZvSuWYZi",
"colab_type": "text"
},
"source": [
"По причине того, что модель проста и никак не адаптирована - получили требуемое по заданию и ожидаемое ухудшение качества"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "67Of4LNlWkFQ",
"colab_type": "text"
},
"source": [
"## Анализ влияния параметров градиентного бустинга на качество\n",
"\n",
"Для чистоты эксперемента сравнение будем производить на широко используемом алгоритме XGBRegressor, вместо лабораторного"
]
},
{
"cell_type": "code",
"metadata": {
"id": "P_laA-lrXajQ",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "9b2e3920-2f6f-4593-e845-52d1c4435e78"
},
"source": [
"trees, errors = np.arange(50, 1000, 50), []\n",
"for tree in trees:\n",
" errors.append(\n",
" cross_val_score(XGBRegressor(n_estimators=tree),\n",
" X,\n",
" y,\n",
" scoring='neg_mean_squared_error').mean()\n",
" )\n",
"plt.plot(trees, errors)\n",
"plt.xlabel(\"n_estimators\")\n",
"plt.ylabel(\"error\")"
],
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"text": [
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:10] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:11] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:12] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:12] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:12] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:12] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:12] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:12] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:13] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:13] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:13] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:13] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:13] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:14] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:14] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:14] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:14] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:14] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:15] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:15] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:15] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:15] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:16] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:16] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:16] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:17] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:17] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:17] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:17] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:18] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:18] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:18] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:19] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:19] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:19] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:20] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:20] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:20] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:21] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Text(0, 0.5, 'error')"
]
},
"metadata": {
"tags": []
},
"execution_count": 11
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAELCAYAAAD+9XA2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl81PW97/HXJztJICErCUvCKgoE\n1CBgEUHUUqVaT12P1r1ab3usbdVW7e2tPaebWq299rZSW61ia+tecUHABbWCAkJAZFF2MhACSYDs\ny/f+Mb9AxBCyzGSSmffzwTzym98y85lhMp98d3POISIi0lVRoQ5ARETCgxKKiIgEhBKKiIgEhBKK\niIgEhBKKiIgEhBKKiIgEhBKKiIgEhBKKiIgEhBKKiIgEREyoA+hOGRkZLj8/P9RhiIj0KsuXLy91\nzmUe67yISij5+fksW7Ys1GGIiPQqZra1PeepyktERAJCCUVERAJCCUVERAJCCUVERAJCCUVERAJC\nCUVERAJCCUVERAJCCSXCrNhWxra9VaEOQ0TCkBJKBFmzs4JLH17CD58tCnUoIhKGlFAixIGaer7z\ntxXUNTaxdPNeSg7UhDokEQkzSigRwDnHnc+vYXtZNT+/YCxNDl5bsyvUYYlImFFCiQBPfbidl1YV\n8/2zRnH5pDxGZSczb5Uv1GGJSJhRQglzn/j289N/fcxpIzO46fThAMwuyOXDrfvYVaFqLxEJHCWU\nMFZZ28B3/raCfn1iuf/iCURFGQDnFuTgHLy8WqUUEQkcJZQw9pMXP2ZTaSUPXjKBzL7xh/YPz0zm\n+Jx+zCsqDmF0IhJulFDC1DPLd/Dsih3cfMZITh2R8YXjswty+GhbOTvKNCZFRAJDCSUMfVpygP/9\nwhomD0vj5pkjWz3nqwW5ALyiai8RCRAllDBTXdfIt5/8iMS4aB689ESivXaTIw1JT6RgUArzipRQ\nRCQwlFDCzM/mfcz63Qe4/5IJZPdLaPPc2QU5FO2oYOveym6KTkTCmRJKGHlx5U7+/sF2bpo+nNNH\nZR7z/HPG5QColCIiAaGEEiY2l1Zy53OrKczrzw/OGtWuawb1T+TEIam8rIQiIgGghBIGauob+faT\nK4iNieJ3l51ITHT7/1tnF+Sy1refTXsOBjFCEYkESihh4BevfMJa337uu3A8ual9OnTtueNyMFO1\nl4h0nRJKL/fqah+Pv7+V66cO5cwTsjt8/YCUBCbmpWmQo4h0mRJKL7ZtbxW3P1vE+MGp3D5rdKcf\n59yCHDbsPsiG3QcCGJ2IRBollF6qrqGJ//r7CgAeuuxE4mI6/1/5lXEDiFK1l4h0kRJKL/Xr19ax\nakcF915YwOC0xC49VlbfBCYNTWdeUTHOuQBFKCKRRgmlF1qwdjd/fnczV03JY9bYnIA85uzxOWza\nU8knPlV7iUjnKKH0MjvLq7n16VWMHdiPO889PmCPO2vMAKKjTI3zItJpSii9SH1jEzf//SMamxwP\nXXYS8THRAXvs9OR4Th2ezrwin6q9RKRTlFB6kQcWbGD51jJ+8R/jyM9ICvjjzy7IYdu+Ktbs3B/w\nxxaR8BeShGJm95rZOjMrMrPnzSy1xbECM3vfzD42s9Vm9oUZDtu6Plwt37qPP7z9GZdOHMx543OD\n8hxfHjOAGFV7iUgnhaqEsgAY65wrADYAdwCYWQwwF/iWc24MMB2ob+/14aq6rpFbny4iN6UPP559\nQtCeJzUxjtNGZqjaS0Q6JSQJxTn3unOuwbu7BBjkbZ8NFDnnVnnn7XXONXbg+rB0z/x1bC6t5N6L\nCkiOjwnqc51bkMvO8mo+2l4e1OcRkfDTE9pQrgVe9bZHAc7M5pvZCjO7vYPXh50lm/by6HtbuGpK\nHqcO/+JSvoF29phs4qKjmLdKgxxFpGOCllDMbKGZrWnldn6Lc+4CGoAnvV0xwFTgcu/nBWY2s43n\nOPL61s65wcyWmdmyPXv2BOCVdZ/K2gZue2YVeemJ/PArnZ9apSP6JcQybVQmr6z20dSkai8Rab+g\n1Z84585s67iZXQ3MBma6wxX2O4DFzrlS75xXgJOARe28vrU45gBzAAoLC3vVN+QvX/2EHWXV/PPG\nKSTGBbeqq6Wvjs9h4Se7Wb6tjIn5ad32vCLSu4Wql9cs4HbgPOdcVYtD84FxZpboNdCfDqztwPVh\n492Npcxdso3rvjS027/UZx6fTXxMFPNWqbeXiLRfqNpQHgL6AgvMbKWZ/RHAOVcG3A98CKwEVjjn\nXgYws0fMrLCt68PFgZp6fvhsEcMyk7j1y8d1+/Mnx8cw47gsXlmzi0ZVe4lIO3VfPUoLzrkRbRyb\ni7/r8JH7r2/P9eHg5y9/gq+immdvOpWE2MCNhu+I2eNzeO3jXSzdvLdbOgOISO/XE3p5SQtvri/h\nqQ+3c+PpwzlxSP+QxXHG6Cz6xEZrvXkRaTcllB6koqqeHz1bxKjsZG45c2RIY0mMi2Hm8Vm8tmYX\nDY1NIY1FRHoHJZQe5O55H1N6sI7fXDQhoBM/dtbsglz2Vtbx/qa9oQ5FRHoBJZQeYsHa3Ty3Yiff\nnjGCcYNSQh0OANOPyyQpLlqDHEWkXZRQeoCyyjrueG41J+T04zszek5/g4TYaM46IZvXPt5FXYOq\nvUSkbUooPcBP/vUxFdV13HfR+C6tDR8Mswtyqaiu573PSkMdioj0cD3r2ysCvbLax0urirn5jJGc\nkNsv1OF8wWmjMuibEKNqLxE5JiWUECo9WMuPX1hDwaAUbpo+PNThtCo+JpqzTxjA62t3UdvwhYmf\nRUQOUUIJEeccP35+DQdrGvjNReOJie65/xWzx+dwoKaBxRtU7SUiR9dzv8XC3L9WFfPax7v4/tmj\nGJndN9ThtGnqiAxSE2O1kqOItEkJJQRK9tfwkxc/5qQhqXzztGGhDueYYqOjmDVmAAvX7qamXtVe\nItI6JZRu5pzjjudWU1PfyH0XjSc6ykIdUrvMLsilsq6Rt9aXhDoUEemhlFC62TPLd7BoXQm3zxrN\nsMzkUIfTbpOHpZGeFMdLmttLRI5CCaUb+Sqq+dlLazklP41rTs0PdTgdEhMdxayxA3jjkxKq6hpC\nHY6I9EBKKN3EOcftzxTR0OS496IConpJVVdLswtyqa5vZNEnqvYSkS9SQukmTy/bwTsbS7nznNHk\npSeFOpxOOWVoGpl94zWlvYi0Sgmlm7xUVMzIrGQun5QX6lA6LTrKOHdcDm+uL+Fgraq9ROTzlFC6\nia+ihuGZyb2yqqulcwtyqG1oYuHa3aEORUR6GCWUbrKrooYBKQmhDqPLTh7Sn4GpfXhy6dZQhyIi\nPYwSSjfYX1PPwdoGclN7f0KJijKunTqUD7eUsWJbWajDEZEeRAmlG/jKawDISekT4kgC49KJg+mX\nEMOctzeFOhQR6UGUULpBcUU1QFiUUACS4mO4YnIe89fuYnNpZajDEZEeQgmlG4RbCQXg6lPziY2K\n4pF3VEoRET8llG7gq6gmyiCrb3yoQwmYrH4JXHDiQJ5ZvoPSg7WhDkdEegAllG5QXF5Ddr+EHr3m\nSWd8c9pQahuaePx99fgSESWUbuGrqCYnDLoMH2lEVl/OPD6LJ97fQnWdprUXiXRKKN3AV1ETVu0n\nLd0wbThlVfU8vXx7qEMRkRBTQgky51zYllAAJub3Z8LgVB55ZzONTS7U4YhICCmhBFl5VT019U3k\npIZnCcXMuHHaMLbtq+K1NbtCHY6IhJASSpAdGoMSpiUUgLPHDCA/PZE5iz/DOZVSRCKVEkqQHRqD\nEqYlFPDPQnzdacNYtaOCpZv3hTocEQkRJZQg80VACQXgopMHkZYUx5zFGugoEqlCklDM7F4zW2dm\nRWb2vJmltjhWYGbvm9nHZrbazI76TWxmPzAzZ2YZ3RN5xxVX1BAbbWQkh8+gxtYkxEZz5ZQ83lhX\nwsbdB0IdjoiEQKhKKAuAsc65AmADcAeAmcUAc4FvOefGANOB+tYewMwGA2cD27oj4M7ylVeT3S+h\n16+D0h5XTsknITZKpRSRCBWShOKce90517zk3xJgkLd9NlDknFvlnbfXOXe0EXMPALcDPboVuLii\nhtwwHYNypLSkOC46eTAvrNzJ7v01oQ5HRLpZT2hDuRZ41dseBTgzm29mK8zs9tYuMLPzgZ3Niacn\nC5eFtdrr+tOG0tjkePS9LaEORUS6WdASipktNLM1rdzOb3HOXUAD8KS3KwaYClzu/bzAzGYe8biJ\nwJ3AT9oZxw1mtszMlu3ZsycAr6z9mpocuypqyAmTaevbIy89iVljB/Dk0q1ad14kwgQtoTjnznTO\njW3l9iKAmV0NzAYud4cHL+wAFjvnSp1zVcArwElHPPRwYCiwysy24K8uW2FmA44SxxznXKFzrjAz\nMzPgr7MteyvrqGtsipgqr2Y3TBvOgZoGnvqgRzdviUiAhaqX1yz87R/neYmj2XxgnJkleg30pwNr\nW17rnFvtnMtyzuU75/LxJ6GTnHM9bph2c5fhcJ125WgmDE7llKFp/OXdzdQ3NoU6HBHpJqFqQ3kI\n6AssMLOVZvZHAOdcGXA/8CGwEljhnHsZwMweMbPCEMXbKcXeoMbcMB7UeDQ3ThtGcUUN84qKQx2K\niHSTmFA8qXNuRBvH5uLvOnzk/uuPcn5+4CILrEgtoQDMOC6LEVnJPPz2Jr42YSBm4d9tWiTS9YRe\nXmHLV1FDfEwUaUlxoQ6l20VFGTecNox1uw7wzsbSUIcjIt1ACSWIisv909ZH6l/n55+YS1bfeA10\nFIkQSihBFM4La7VHfEw0V38pn3c/LWXNzopQhyMiQaaEEkS7Kmoisv2kpcsn5ZEUF82f3lEpRSTc\nKaEESWOTY9f+yBrU2JqUPrFcesoQ5hX52FFWdewLRKTXUkIJkj0HamlschFd5dXs2qlDMeAv724J\ndSgiEkRKKEFyaKXGCC+hAAxM7cNXx+fy1IfbqKhqdfJoEQkDSihBcmilRpVQAPjmacOoqmtk7tKt\noQ5FRIJECSVIDq/UqIQCcEJuP04bmcFj/95CbcPRViQQkd5MCSVIistrSIyLpl+fkExG0CPdOG04\new7U8sJHO0MdiogEgRJKkPgqIntQY2u+NCKdE3L6MWfxJpqaevS6aCLSCUooQRLpgxpbY2bcePow\nPttTyRvrSkIdjogEmBJKkDSXUOTzzhmXw8DUPpqORSQMKaEEQX1jEyUHasmJwGnrjyU2Ooprpw7l\ngy37+NeqYlV9iYQRJZQg2L2/BucgVyWUVl06cTB56Ync/PePmPGbt/jT4k2UV9WFOiwR6SIllCDw\nVXhjUFRCaVVSfAyvf28aD146gay+8fz8lU+Y9ItF3Pr0Kop2lIc6PBHppGP2aTWzaOBm59wD3RBP\nWCgubx6DohLK0cTHRHP+hIGcP2Egn/j2M3fJVp7/aCfPLN/B+EEpXDE5j6+OzyUhNjrUoYpIOx2z\nhOKcawQu64ZYwoZKKB1zfE4/fn7BOJbcOZO7zxtDZV0jtz1TxKRfLOLnL69l697KUIcoIu3Q3lF3\n75nZQ8A/gEO/3c65FUGJqpfzlVfTNyGG5HgNauyIfgmxXHVqPldOyWPJpn3MXbKVR9/bwp/e2czp\nozL5xuQ8ZozOIjpKY3tEeqL2fuNN8H7+rMU+B5wR2HDCg6+iRlOudIGZMWV4OlOGp7N7fw1//2Ab\nf/9gG9c/voyBqX34z0lDuGTiYDKS40Mdqoi00K6E4pybEexAwomvooYBaj8JiOx+Cdxy5ii+PWME\nC9fu5oklW7l3/noeXLiRc8YN4DtnjGREVnKowxQR2plQzCwF+D/ANG/X28DPnHNa17UVvopqxg7s\nF+owwkpsdBRfGZfDV8bl8GnJAeYu2cYzy3fwUpGPb0zO47szR9I/KS7UYYpEtPZ2G/4LcAC42Lvt\nBx4NVlC9WW1DI6UH6zTtShCNyOrLT88bw9u3TeeyUwbz+PtbmH7fWzz63mbqG5tCHZ5IxGpvQhnu\nnPs/zrlN3u1uYFgwA+utdjX38FKVV9ClJ8fzP18bx6vfnUbBoBTufmktX/7tYt5YtxvnNAJfpLu1\nN6FUm9nU5jtm9iWgOjgh9W7F3sJaueoy3G2OG9CXx689hb9cXQgOrn1sGVf+5QM27D4Q6tBEIkp7\ne3l9C3jca0sBKAOuCk5IvVvzwloqoXQvM+OM0dlMHZHJ3CVb+e3CDXzlwXf4z1OG8L2zRpGm9hWR\noGvPSPko4Djn3Hgz6wfgnNsf9Mh6qUODGtWGEhJxMf7JJy84cSC/XbiBuUu38cLKnXx35kiunJJP\nXIxmGxIJlvaMlG8Cbve29yuZtK24vJr+ibH0idOUIaHUPymOu88fy2vfPY2T8/rzPy9/wpd/u5gF\na9W+IhIs7f1zbaGZ3Wpmg80srfkW1Mh6qV1aWKtHGZndl8euOYVHr5lIdJTxzceXccWfl/KJT38X\niQRae9tQLvF+frvFPod6en1BcUWNJoXsgWYcl8XUERn8bek2Hli4gXN/9w6XTBzCD84epRH3IgFy\nzBKK14ZyhXNu6BE3JZNW+CqqyUlVQumJYqOjuOrUfN6+dQZXnzqUp5dtZ8a9b7F0095QhyYSFtrb\nhvJQN8TS61XXNVJeVa8qrx4uJTGWn3z1BOZ/bxqZ/eK5ce5yNpdqRmORrmpvG8oiM/u6mQVkmlcz\nu9fM1plZkZk9b2apLY4VmNn7Zvaxma02s1b/3Dez//Ie42MzuycQcXVVsddlOFcllF5heGYyj119\nClFmXPPoB5RVatVIka5ob0K5EfgnUGtm+83sgJl1pVVzATDWOVcAbADuADCzGGAu8C3n3BhgOlB/\n5MVmNgM4HxjvnXdfF2IJGF+5ugz3NkPSE/nTlSdTXFHDjU8sp7ahMdQhifRa7U0oKcDVwP845/oB\nY4CzOvukzrnXnXMN3t0lwCBv+2ygyDm3yjtvr7fA15FuAn7lnKv1zivpbCyBdKiEooTSq5ycl8Z9\nF43ngy37+NGzq9WtWKST2ptQfg9M5vDKjQcIXLvKtcCr3vYowJnZfDNbYWa3H+WaUcBpZrbUzN42\ns4kBiqVLmkso2SnqNdTbnDc+lx+cNYrnP9rJg4s2hjockV6pvd2GJznnTjKzjwCcc2Vm1uZcFma2\nEBjQyqG7nHMveufcBTQAT7aIZyowEajC33az3Dm3qJW40/AnuYnAP81smGvlT0szuwG4AWDIkCHt\nerGdtWt/NRnJ8cTHaFBjb/SdM0awZW8Vv124kfz0JL524sBQhyTSq7Q3odSbWTT+sSeYWSbQ5jzh\nzrkz2zpuZlcDs4GZLRLBDmCxc67UO+cV4CTgyISyA3jOu+4DM2sCMoA9rcQxB5gDUFhYGNS6jOLy\nGs3h1YuZGb/8j3HsLK/i9meKyE3twylDNX5XpL3aW+X1O+B5IMvMfg68C/yis09qZrPwT+dynnOu\nqsWh+cA4M0v0GuhPB9a28hAvADO8xxoFxAGlnY0nUHwV1UoovVxcTBR/vOJkBvXvw41PLGOLuhOL\ntFu7Eopz7kn8CeCXgA/4mnPu6S4870NAX2CBma00sz96z1MG3A98CKwEVjjnXgYws0fMrNC7/i/A\nMDNbAzwFXNVadVd385XXaNr6MJCaGMej1/ib5a597EPKq9SdWKQ92lvlhXNuHbAuEE/qnBvRxrG5\n+LsOH7n/+hbbdcAVgYglUA7U1HOgtkEllDCRl57EnCsLufxPS7nxieU8cd0kzVQscgz6DQmQQ9PW\nq4QSNibmp3HvRQUs3byPHz1XpO7EIsfQ7hKKtK24vHkMikoo4eT8CQPZUlrFAws3MDQ9if+aOTLU\nIYn0WEooAaISSvi6eeYItu6t5DcLNjAkPZHzJ6g7sUhrVOUVIL7yaqIMsvtqUGO4MTN++fVxnDI0\njdueLmLZln2hDkmkR1JCCRBfRQ1ZfROIidZbGo7iY6J5+IqTGdi/Dzc8sZyte9WdWORI+vYLEF9F\nDQPUfhLW+ifF8ZerJ9LkHNc89iEVVV+Yt1QkoimhBEhxRbWmrY8AQzOSmPONQnbsq+bGucuoa2hz\nwgiRiKKEEgDOOXzlWks+UpwyNI1fXziOJZv2cefzmp1YpJl6eQVARXU91fWNGtQYQS44cRBbSqt4\ncNFGhmYk8e0ZRx2rKxIxlFACoNibtl7TrkSWW84cyda9ldw7fz3vfVrKdVOHMuO4LKKiArKwqUiv\no4QSAD5vYS2VUCKLmXHPheM5Pqcfj/17C9f9dRnDMpK4dupQvn7SIPrEaRkDiSxqQwmA4gqVUCJV\nXEwUN54+nMW3z+DBSyeQnBDDj19Yw5RfLeK++esp2V8T6hBFuo1KKAGwq6KamCgjI1mDGiNVbHQU\n508YyHnjc1m2tYxH3tnE79/6lIcXf8ZXx+dy3dShjMlNCXWYIkGlhBIAvvIasvslEK2684hnZkzM\nT2Nifhpb91by6Htb+Oey7Ty3YienDk/n+tOGMn1U4NpZmpocO8ur2VhygD0HaknpE0tqYhz9E+NI\nTYwlNTFWK4hKt1FCCYBiLawlrchLT+Kn543he2eN4qkPtvHYv7dw7WPLGJaZxLVf6lg7S2OTY/u+\nKjaWHGRjyQE+3X2QjSUH+bTkINX1jW1e2yc2mv6J/kSTmhj7uWTTPzGOlD7+n/2TYslLT1JJWzrN\nIqkPfWFhoVu2bFnAH/f0e9+kYFAq//eyEwP+2BI+6hubeGW1jz+/u5miHRWkJsZyxaQ8rpySR1Y/\n/x8kDY1NbN1XxcbdB/m05AAbvMTx2Z6DnxtEmZOSwMjsvozMSvbfspPJ6pvAgZoGyqvqKKuqp7y6\njvKqesoq6yivrj+8v8q/v7y6nsamz//+x0VHccXkPL5zxgjSkuK69f2RnsvMljvnCo91nkooXeSc\nw1dRw6wxKqFI29pqZ5k8LJ2S/bVsKj1IfePhL/lB/fswMiuZ00ZmMMJLHiOykumbENvleJqaHAfr\nGiivrKesqo6yqjpeW7OLx/69maeXbefG04dx7dShJMbpa0LaR5+ULtpbWUddQ5OqvKTdWmtnee/T\nUvLSE5kxOutQiWN4ZjJJ8cH7FY2KMvolxNIvIZYh6YkATD8ui+tPG8o9r63nvtc38Nf3t3LLmSO5\nuHAwsZr4VI5BCaWLfOVaB0U6r7mdpScZkdWXOVcWsnzrPn75yjruen4Nf35nM7d9+ThmjR2AmTqf\nSOv0J0cXFVc0r9SohCLh5eS8NJ7+1hQeubKQ6CjjpidX8LX/92+WbNob6tCkh1JC6SKft/RvjmYa\nljBkZpx5Qjav3TKNey4soGR/DZfOWcI1j37AJ779oQ5PehgllC7y7a8hLjqKdPWIkTAWHWVcXDiY\nN2+dzp3njGbFtnLO+d07fP+fK9lRVhXq8KSHUELpIl+5f2Et1StLJEiIjeaGacNZfNsMbpw2nJeL\nfJxx39v897y17KusC3V4EmJKKF3k06BGiUApibH86Cujeeu26Vxw4kAefW8zp9/zJr9/81Oq6hpC\nHZ6EiBJKFxWX12hSSIlYOSl9+PWFBcy/ZRqTh6dz7/z1fOlXb/Dr19apKiwCqdtwFzQ2OXbvr1EJ\nRSLeyOy+/Mnrajxn8SYefvszHn77M2Yen81VU/L50oh0VQtHACWULig9WEtDk9MYFBHPyXlpPPyN\nNHaWV/O3pVt56oPtLFi7m2GZSVw5OY+vnzwoIKP8pWdSlVcXFJc3j0FRCUWkpYGpfbjty6P59x1n\n8MAl4+mXEMtPX1rLpF8s4scvrGbD7gOhDlGCQCWULvB5C2vlaFCjSKviY6K54MRBXHDiIIp2lPP4\n+1v557IdzF2yjcnD0rhqSj5nnZBNjKZ1CQtKKF3gO7RSo0ooIsdSMCiV+y5K5c5zjucfH25n7pKt\n3PTkCnJSEvjPU4Zw6SlDyOyrqfN7MyWULvCVV9MnNpqUPqoTFmmvtKQ4bpo+nBumDeONdSU8/v4W\nfrNgA797YyPnjMvhyin5nDQkVY34vZASShf4Kvw9vPTBF+m46CjjrBOyOeuEbD7bc5An3t/Ks8t3\n8OLKYoZnJjHz+GxmHJdFYX5/zXTcS4QkoZjZvcBXgTrgM+Aa51y5d6wAeBjoBzQBE51zNUdcPwH4\nI5AANAD/yzn3Qfe9Ar/iimrN4SUSAMMzk/npeWO47cvH8cLKnby6ehePvreZOYs30TchhmkjM5kx\nOovpx2VqRckeLFQllAXAHc65BjP7NXAH8EMziwHmAt9wzq0ys3SgvpXr7wHuds69ambnePend1Ps\nh/jKa5g6MqO7n1YkbCXFx3D5pDwun5THwdoG3t1YypvrSnhzfQkvr/ZhBuMHpXLG6CzOGJ3FmNx+\nqiHoQUKSUJxzr7e4uwS40Ns+Gyhyzq3yzjvaPNkOfwkGIAUoDkacbWlobKLkQI26DIsESXJ8DLPG\nDmDW2AE0NTnW+vbzxroS3lhXwgMLN3D/gg1k9Y1nxnFZzBidxdSRGSR3cUGyxibH/mr/Cpbl1fXU\nNzThgOaV0h0O75//vvP2Hdr2r+LqP/fw60jtE0tKYiypfeKIiwnf6rue0IZyLfAPb3sU4MxsPpAJ\nPOWcu6eVa24B5pvZffjH0px6tAc3sxuAGwCGDBkSsKB3H6ilyWlhLZHuEBVljB2YwtiBKdw8cySl\nB2t5a/0e3lxXwiurffxj2XZio41JQ9OZ4ZVesvvFU1ZVT1llHRXVzcsc11Ne6f30lj0uq6o/dLyi\nuv5Q8giWpLhoUhPjSOkTS2qi/5bSJ86/fWhfnLcdR//EWDKS44mK6vklsaAlFDNbCAxo5dBdzrkX\nvXPuwt8G8mSLeKYCE4EqYJGZLXfOLTriMW4Cvuece9bMLgb+DJzZWhzOuTnAHIDCwsKAfVQOrYOi\nEopIt8tIjufCkwdx4cmDqG9sYtmWMt5c7y+9/Pe8tfz3vLVtXt/8pd4/KZb+iXEMTksktU8s/b0v\n8/5J/tJEfHNpwsDwf6GbgcGhqrbm+83bYLSshausbaC8qp7yan8yK6+up7yqnorqOsqr6tmw+6D/\neFUdDU2tf0XFx0QxNCPp0G1YZrL/Z0YS/XvQ0hlBSyjOuVa/4JuZ2dXAbGCmc4f+JtgBLHbOlXrn\nvAKcBByZUK4CvuttPw08EqBH83OfAAAMAklEQVSw26340BgUlVBEQik2Ooopw9OZMjydO885nu37\nqnhrfQkHaxsPJ4jEWPonNZcCema1k3OOqrpGyqsPl6rKq+rZV1nLtn1VbC6tZP2uAyxYu/tziSc1\nMfZQohnuJZqhGUnkpyfRJy66W19DqHp5zQJuB053zrWcknQ+cLuZJeLvAXY68EArD1HsHXsLOAPY\nGNSAW7GrQiUUkZ5ocFoi35iSH+owOszMSIqPISk+hoFt/KFa39jEjrJqNpceZNOeSjaVVrJ5TyX/\n/nQvz63Y+blzc1MSDpVmrpicx3ED+gb1NYSqDeUhIB5Y4BUblzjnvuWcKzOz+4EP8bdpveKcexnA\nzB4B/uicWwZ8E3jQ6xVWg9dG0p2Ky2tIjo/RRHci0q1iow9Xf50x+vPHKmsb2LK3kk17Ktlc6r9t\nKq3khZU7mV2QE/TYQtXLa0Qbx+bi7zp85P7rW2y/C5wcnOjaRwtriUhPkxQfw5jcFMbkpnxuvwt2\nTwNPT+jl1Sv5KmrUw0tEeoXuGqvT81qmeonico1BERFpSQmlE2obGik9WKtp60VEWlBC6YTdFbUA\nmsdLRKQFJZROKK5oXqlRJRQRkWZKKJ2wq3mlRpVQREQOUULphGINahQR+QIllE7wldeQ0ieWxDj1\nuhYRaaaE0gka1Cgi8kVKKJ1QXF6jSSFFRI6ghNIJKqGIiHyREkoHVdc1UlZVrxKKiMgRlFA6yKce\nXiIirVJC6SBf8xgUDWoUEfkcJZQO8h1aqVElFBGRlpRQOqh5LfnsfkooIiItKaF0UHFFDelJcSTE\ndu9azSIiPZ0SSgf5Kqo1h5eISCuUUDrIV16jBnkRkVYooXRQcUW1VmoUEWmFEkoHHKxt4EBNg9aS\nFxFphRJKBzT38NKgRhGRL1JC6YDDY1BUQhEROZISSgdo2hURkaNTQumA4vIazDSoUUSkNUooHeCr\nqCYzOZ7YaL1tIiJH0jdjB/gqatTDS0TkKJRQOqC4XGNQRESORgmlnZxz/hKKRsmLiLRKCaWd9lc3\nUFXXqGnrRUSOQgmlnYoPdRlWCUVEpDUhSShmdq+ZrTOzIjN73sxSvf2Xm9nKFrcmM5vQyvVpZrbA\nzDZ6P/sHO+ZdzSs1qoQiItKqUJVQFgBjnXMFwAbgDgDn3JPOuQnOuQnAN4DNzrmVrVz/I2CRc24k\nsMi7H1TNJZRclVBERFoVkoTinHvdOdfg3V0CDGrltMuAp47yEOcDf/W2/wp8LbARfpGvvIboKCOz\nb3ywn0pEpFfqCW0o1wKvtrL/EuDvR7km2znn87Z3AdnBCKyl4opqsvvGEx1lwX4qEZFeKSZYD2xm\nC4EBrRy6yzn3onfOXUAD8OQR104Cqpxza471PM45Z2aujThuAG4AGDJkSPtfwBF85RrUKCLSlqAl\nFOfcmW0dN7OrgdnATOfckQnhUo5eOgHYbWY5zjmfmeUAJW3EMQeYA1BYWHjUxHMsvopqxg5M6ezl\nIiJhL1S9vGYBtwPnOeeqjjgWBVzM0dtPAP4FXOVtXwW8GIw4mzUPatS09SIiRxeqNpSHgL7AAq97\n8B9bHJsGbHfObWp5gZk9YmaF3t1fAWeZ2UbgTO9+0OyrrKO2oUnT1ouItCFoVV5tcc6NaOPYW8Dk\nVvZf32J7LzAzKMG1onlhLQ1qFBE5up7Qy6vHO7xSo0ooIiJHo4TSDs0rNQ5QlZeIyFEpobRDcXkN\nsdFGRpIGNYqIHI0SSjtkJMcxbWQmURrUKCJyVCFplO9trj9tGNefNizUYYiI9GgqoYiISEAooYiI\nSEAooYiISEAooYiISEAooYiISEAooYiISEAooYiISEAooYiISEDYF9e2Cl9mtgfYGuo4eoAMoDTU\nQfQgej8O03vxeXo//PKcc5nHOimiEor4mdky51zhsc+MDHo/DtN78Xl6PzpGVV4iIhIQSigiIhIQ\nSiiRaU6oA+hh9H4cpvfi8/R+dIDaUEREJCBUQhERkYBQQgkzZjbYzN40s7Vm9rGZfdfbn2ZmC8xs\no/ezv7ffzOx3ZvapmRWZ2UmhfQXBYWbRZvaRmc3z7g81s6Xe6/6HmcV5++O9+596x/NDGXegmVmq\nmT1jZuvM7BMzmxLJnw0z+573e7LGzP5uZgmR+tkIBCWU8NMA/MA5dwIwGfi2mZ0A/AhY5JwbCSzy\n7gN8BRjp3W4A/tD9IXeL7wKftLj/a+AB59wIoAy4ztt/HVDm7X/AOy+cPAi85pwbDYzH/55E5GfD\nzAYCNwOFzrmxQDRwKZH72eg655xuYXwDXgTOAtYDOd6+HGC9t/0wcFmL8w+dFy43YBD+L8ozgHmA\n4R+sFuMdnwLM97bnA1O87RjvPAv1awjQ+5ACbD7y9UTqZwMYCGwH0rz/63nAlyPxsxGom0ooYcwr\nkp8ILAWynXM+79AuINvbbv6larbD2xdOfgvcDjR599OBcudcg3e/5Ws+9H54xyu888PBUGAP8KhX\n/feImSURoZ8N59xO4D5gG+DD/3+9nMj8bASEEkqYMrNk4FngFufc/pbHnP9PrIjo3mdms4ES59zy\nUMfSA8QAJwF/cM6dCFRyuHoLiLjPRn/gfPyJNhdIAmaFNKheTgklDJlZLP5k8qRz7jlv924zy/GO\n5wAl3v6dwOAWlw/y9oWLLwHnmdkW4Cn81V4PAqlmFuOd0/I1H3o/vOMpwN7uDDiIdgA7nHNLvfvP\n4E8wkfrZOBPY7Jzb45yrB57D/3mJxM9GQCihhBkzM+DPwCfOuftbHPoXcJW3fRX+tpXm/Vd6PXom\nAxUtqj96PefcHc65Qc65fPwNrm845y4H3gQu9E478v1ofp8u9M4Pi7/YnXO7gO1mdpy3ayawlgj9\nbOCv6ppsZone703z+xFxn41A0cDGMGNmU4F3gNUcbjO4E387yj+BIfhnXL7YObfP+0V6CH9Rvwq4\nxjm3rNsD7wZmNh241Tk328yG4S+xpAEfAVc452rNLAF4An/b0z7gUufcplDFHGhmNgF4BIgDNgHX\n4P/DMiI/G2Z2N3AJ/t6RHwHX428ribjPRiAooYiISECoyktERAJCCUVERAJCCUVERAJCCUVERAJC\nCUVERAJCCUVERAJCCUUkyMxsgpmd0+L+eWb2o7au6cBj32JmiYF4LJGu0jgUkSAzs6vxT5H+nSA8\n9hbvsUs7cE20c64x0LGIqIQi4jGzfG/RqT95iy69bmZ9jnLucDN7zcyWm9k7Zjba23+Rt1jTKjNb\n7C3O9DPgEjNbaWaXmNnVZvaQd/5jZvYHM1tiZpvMbLqZ/cWL47EWz/cHM1vmxXW3t+9m/JMavmlm\nb3r7LjOz1V4Mv25x/UEz+42ZrQKmmNmvzL8IW5GZ3Recd1QiTqjnz9dNt55yA/LxT8Exwbv/T/zT\nbrR27iJgpLc9Cf+8TuCf8magt53q/bwaeKjFtYfuA4/hn+bD8M98ux8Yh/+PveUtYknzfkYDbwEF\n3v0tQIa3nYt/fqpM/DMLvwF8zTvm8E+pAv4p19dzuIYiNdTvvW7hcVMJReTzNjvnVnrby/Enmc/x\nlgY4FXjazFbiX4gqxzv8HvCYmX0T/5d/e7zknHP4k9Fu59xq51wT8HGL57/YzFbgn1tqDHBCK48z\nEXjL+WfPbQCeBKZ5xxrxz0AN/nU8aoA/m9l/4J+nS6TLYo59ikhEqW2x3Qi0VuUVhX8RpglHHnDO\nfcvMJgHnAsvN7OQOPGfTEc/fBMSY2VDgVmCic67MqwpLaMfjtlTjvHYT51yDmZ2Cf3bdC4Hv4J/W\nX6RLVEIR6SDnX7Bss5ldBP4lA8xsvLc93Dm31Dn3E/yrIw4GDgB9u/CU/fAvhlVhZtn413pv1vKx\nPwBON7MMM4sGLgPePvLBvBJWinPuFeB7+NeWF+kylVBEOudy4A9m9mMgFn87yCrgXjMbib9NZJG3\nbxvwI6967JcdfSLn3Coz+whYh38J2vdaHJ4DvGZmxc65GV535De953/ZOffiFx+RvsCL3nTsBny/\nozGJtEbdhkVEJCBU5SUiIgGhKi+RNpjZ7/GvM97Sg865R0MRj0hPpiovEREJCFV5iYhIQCihiIhI\nQCihiIhIQCihiIhIQCihiIhIQPx/ZEsr/H1wShQAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "9pO9U0EuX1j4",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 760
},
"outputId": "ebc61854-2b1a-44dd-d27c-b4f6dff80a2a"
},
"source": [
"depth, errors = np.arange(2, 20, 2), []\n",
"for d in depth:\n",
" errors.append(\n",
" cross_val_score(XGBRegressor(max_depth=d),\n",
" X,\n",
" y,\n",
" scoring='neg_mean_squared_error').mean()\n",
" )\n",
"plt.plot(depth, errors)\n",
"plt.xlabel(\"max_depth\")\n",
"plt.ylabel(\"error\")"
],
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"text": [
"[08:30:21] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:21] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:21] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:21] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:21] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:21] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:22] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:23] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:23] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:23] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:23] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:23] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:23] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:23] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:24] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:24] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:24] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n",
"[08:30:24] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Text(0, 0.5, 'error')"
]
},
"metadata": {
"tags": []
},
"execution_count": 12
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAELCAYAAAD+9XA2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VPW9//HXJwsJhIR9CTsIyBIR\nJVXrruBSpSqtXa3VWq/13q7aW1tre7vaRWu1vfbWql1s9dfNVm1dQbq4VGvBCmQAQQMImbBjJhBC\nlvn8/pgTjDGBBGZyZnk/H4885sxZZj4JYd455/s936+5OyIiIocrL+wCREQkOyhQREQkKRQoIiKS\nFAoUERFJCgWKiIgkhQJFRESSIpRAMbObzWy1mS03swfMbGC7bbPM7Dkzi5jZCjMr7uT4wWa2yMzW\nBo+Devc7EBGRjsI6Q1kEVLj7LGANcD2AmRUA9wJXu/tM4HSguZPjvwAsdvcpwOLguYiIhCiUQHH3\nhe7eEjx9HhgTLJ8NLHf3ZcF+O9y9tZOXuBC4J1i+B7golfWKiMjBFYRdAHAF8NtgeSrgZvYEMAz4\njbvf1MkxI9y9NljeDIzo6sXN7CrgKoCSkpI506ZNS1rhIiK5YOnSpdvdfdjB9ktZoJjZk8DITjbd\n4O4PBfvcALQA97Wr52TgbUADsNjMlrr74q7ex93dzLocP8bd7wTuBKisrPQlS5YcyrcjIpKzzGxD\nd/ZLWaC4+7wDbTezy4H5wFx/Y0CxTcBT7r492OdR4FgS7STtbTGzcnevNbNyYGtSixcRkR4Lq5fX\nucB1wAXu3tBu0xPAUWbWL2igPw1Y2clL/Am4LFi+DHgolfWKiMjBhdXL63agFFhkZi+Z2R0A7r4L\n+D7wL+Al4EV3fwTAzO42s8rg+O8AZ5nZWmBe8FxEREIUSqO8u08+wLZ7SXQd7rj+ynbLO4C5qalO\nREQOhe6UFxGRpFCgiIhIUihQREQkKRQoGWxb/T6er94RdhkiIoACJaPd/pe1fOCu51m28fWwSxER\nUaBksuU1dbjDFx9YQUtrPOxyRCTHKVAyVGvcWVUb44hhJUSiMX75XLdGRhARSRkFSoaq3rabxuY4\n/3X6ZE6bOoxbFr7M5rrGsMsSkRymQMlQkWgMgJmjy/j6hTNpiTtffzgSclUikssUKBkqEq2jT0Ee\nRwzrz/ghJXzyzMk8umIzf12tcTJFJBwKlAxVVRNj+shSCvMT/4RXnXoEk4f358sPVbG3qbM5yURE\nUkuBkoHcnUi0jhmjBuxf16cgj29eVMGmXXv537+sDbE6EclVCpQMtGnXXmKNLcwcVfam9SdMGsK7\njx3DnU9Vs2ZLfUjViUiuUqBkoLYG+YrRA96y7YvnTaN/cQFfeqCKeLzLiSxFRJJOgZKBItE68vOM\naSNL37JtSP8irn/HNF5Yv5P7X9wUQnUikqsUKBkoEk3c0FhcmN/p9vfMGUvl+EF8+9FV7NzT1MvV\niUiuUqBkoEi0jpmj3nq5q01ennHjgqOob2zh24+u6sXKRCSXKVAyzLb6fWyJ7XtLg3xHR44s5cpT\nJvH7pZv4p0YkFpFeoEDJMJFoHcABz1DafGruZEYP7MuXHqyiqUWDR4pIailQMkxbD68ZBzlDAejX\np4CvXziTtVt3c/cz1akuTURynAIlw6yMxhg7uC8D+hZ2a/+500dw7syR/HDxWjbubEhxdSKSyxQo\nGSYSraOiG5e72vvKBTPIN+PLD1XhrntTRCQ1FCgZJNbYzPodDQdtkO+ofEBfrjlrKn97eRuPV21O\nUXUikusUKBlkVduQ9T08QwG4/MQJzCgv46t/jlDf2Jzs0kREFCiZpP0cKD1VkJ/HjQsq2Fq/j+8v\nWpPs0kREFCiZpCpax7DSIoaXFh/S8ceMG8Qlx4/jnn+sp6qmLsnViUiuU6BkkJXRWI/bTzr63DnT\nGFxSxBcfWEGrBo8UkSRSoGSIxuZW1m7dfdiBMqBvIV+eP53lm+q4758bklSdiIgCJWOs2VJPa9x7\n3GW4MxccPYqTJw/l5sdfZmusMQnViYgoUDJGVc2h9/DqyMz4xkUV7GuN841HNHikiCSHAiVDRKJ1\nlBYXMHZw36S83sShJXz89Mn8eVmUp9ZsS8prikhuU6BkiEg0xozyMswsaa959emTmDS0hC8/VEVj\nc2vSXldEcpMCJQO0tMZZvTnW6ZS/h6OoIJ9vXlTBhh0N/N9fX0nqa4tI7lGgZIDq7XtobI4fdg+v\nzpw4eSgLjhnNj//+Kq9s3Z301xeR3KFAyQA9mQPlUHzxvOn0LcznSw+u0OCRInLIFCgZIFITo6gg\njyOGlaTk9YeVFvH5d0zj+eqdPPDvmpS8h4hkv4KwC5CDq4rWMa28jIL81OX/B942jvuXbuLGR1Zx\n5rThDOzXJ2XvJSKHLh53Glta2dcc3/+4ryVOY3PrAR/PmTmCMYP6pbS2UALFzG4G3gk0Aa8CH3H3\n14Nts4CfAGVAHHibuzd2OP6rwH8Abf1dv+juj/ZO9b3L3VkZjTH/6FEpfZ+8POPGi47inbc/w3cf\nX8233zUrpe8nkm3icad6+27qG1ve9EH+puXOPuzbBUNXj/vaPW9uPbTL0pOGlWRnoACLgOvdvcXM\nvgtcD3zezAqAe4FL3X2ZmQ0Buhpr/VZ3/14v1RuaTbv2EmtsSUmDfEczRpVxxUkTuOvpdVw8Zwxz\nxg9O+XuKZDJ3Z9mmOh5eFuXRFbVE67o38oQZFBfkU1yYR1Enj/2LChhSkk9RYR7FBZ0/FhXkUVyY\n363HooJ8SoryU/zTCClQ3H1hu6fPAxcHy2cDy919WbDfjt6uLd20NcgnY8iV7vjMvKk8sryWGx6o\n4s+fPJnCFF5mE8lE7k4kGuPh5bU8siLKxp17Kcw3Tps6jM+cNZVhpUVdfqi3BUZhviX1nrJ0kQ5t\nKFcAvw2WpwJuZk8Aw4DfuPtNXRz3CTP7MLAE+Ky77+psJzO7CrgKYNy4cUktvDdU1cTIzzOOHFna\nK+9XUlTAVy+YyVW/WsrPnlnHx047olfeVySduTsvb6nnkeW1PLy8lnXb91CQZ5w0eSifOnMKZ88c\nyYC+hWGXGbqUBYqZPQmM7GTTDe7+ULDPDUALcF+7ek4G3gY0AIvNbKm7L+7wGj8GvgF48HgLiWB6\nC3e/E7gToLKyMuP6xEaidUwe1p/iwtSfrrY5e+ZI5k0fwW1PruX8WeUpv+4qkq5e2bqbh5dHeXh5\nLa9s3U2ewYlHDOVjp07inJkjGVSizivtpSxQ3H3egbab2eXAfGCuv3HzwybgKXffHuzzKHAs8KZA\ncfct7V7nLuDh5FWeXiLRGCdPHtrr7/vVC2Zw1vef4qt/Wsndl1X2+vuLhGX99j08sqKWPy+Lsnpz\nPWZw3ITBXHZRBe+oGMnQ/kVhl5i2wurldS5wHXCauze02/QEcJ2Z9SPRA+w04NZOji9399rg6QKg\nKsUlh2JrfSNb6/cxM8lDrnTHmEH9uOasKXzr0dU8EdnMOTM7O9kUyQ4bdzbwyIpaHl4e3T+y95zx\ng/jKO2dw3lHljCg7tFlSc01YbSi3A0XAoqBh6nl3v9rdd5nZ94F/kbic9ai7PwJgZncDd7j7EuAm\nM5sd7LMe+FgI30PK7Z9Dvhd6eHXmIydN5I8v1vDVP0U4efJQSorSoclNJDlq6/bubxN5aePrABw9\ndiBfOn865x1VzqiByRnZO5eE1ctr8gG23Uui63DH9Ve2W740RaWllZVBoMwIKVAK8/O4cUEF7/7x\nc9z25BpuOH9GKHWIJMvWWCOPrkiEyJINiX48M0eV8flzpzF/VjljB6u98HDoT840FonWMX5IP8qK\nw+s9Mmf8YD5w3Dh+9ux6FhwzJrRwEzlU23fv4/GqzTy8PMo/1+3EHaaNLOW/z57K+bNGMXFoaoY0\nykUKlDRWVROjYnT4H+CfP/dIFkY2c8ODK/jD1SeSl5eZ/efdnabWOEUFvddjTsLxekNTECK1PFe9\ng9a4c8SwEj515hTeeXQ5k4f3Tjf8XKNASVOxxmZe29nA+942NuxSGNivDzecP51rf7eMX//rNS45\nfnzYJfXIvpZW/vRSlLufXser23bzoRPG88kzJzNEvXWySqyxmYWRLTy8PMoza7fTEnfGD+nH1adN\nYv6sUUwbWZqVNxOmEwVKmgq7/aSjBceM5vdLNvHdx1Zz9oyRDCtN/w/juoZm7nthA794dj1b6/cx\nbWQpF8wexa+e38D9Szdx9WmT+OjJk+jbR2csmWr3vhaeXJkIkafWbKepNc7ogX356CkTeeesUcwc\nldxZTuXAFChpqq2HV28NuXIwZsY3F1Twjtue5sZHVnLb+48Ju6QubdzZwE+fWcfvlmykoamVU6YM\n5Zb3Hs3Jk4diZvzX6ZO56fHVfG/hGn71/AaumTeVi+eMSelozpI8za1xFka28OdlUf768lb2tcQZ\nWVbMpW8fz/xZ5cweO1AhEhIFSpqK1NQxvLQorc4EjhjWn6tPm8QP//IK76kcy0kh3HB5IMs2vs6d\nT1fz2Ipa8sy4YPYo/uOUSUwvf/NZ3uTh/bnzw5UsWb+Tbz26ii/8cQU/fWYdnz93GnOnD9eHUZpq\naY3z4EtRfrh4La/tbGBYaREfOG4c588qZ864QRnbtpdNLJdm6KusrPQlS5aEXUa3nHPrU4waWMzP\nP3Jc2KW8SWNzK+fc9hR5Zjz26VN6dUiYzsTjzl9Wb+XOp6t5Yd1OSosK+OAJ47j8xAmUDzj4fQTu\nzhORzXz38ZdZt30Px00czBfPm87ssQN7oXrpjnjceWRFLbc+uYbqbXuYOaqMa+ZN5Yxpw8lXiPSK\nYAisgw6ZoTOUNNTY3Mor23Zz1owRYZfyFsWF+Xzjwgo+/LMX+Mnfq/n0vCmh1NHY3MoD/67hrqer\nqd62h9ED+/Kl86fzvreNpbQH3azNjHMrypk7fQS/eeE1frB4LRf96FnOn1XOdeccyfgh6lIaFndn\n4cot3LpoDas31zN1RH/u+NAczpk5QmeRaUqBkoZe3lxPa9zTostwZ06dOox3Hj2KH/3tFS6Y3bv9\n+HfuaeLe5zfwy+fWs313ExWjy/jB+2dz3lHlhzXUfmF+Hpe+fQILjh3DnU9Vc9dT1TxRtVk9wkLg\n7vxtzTZuXbSG5ZvqmDS0hB+8fzbzZ43SGUmaU6CkoapgDpSZadIg35kvnz+dv63eypcfrOJXHz0u\n5X8xrt++h58+s47fL91IY3OcM6cN5z9OmcQJkwYn9b37FxVw7VlT+dDx47ht8dr9PcL+8/QjuOKk\nieoRlmL/eHU7tyxcw9INuxgzqC83XzyLBceMVoeJDKFASUORaIyy4gLGDErfsYSGlxVz3blH8uWH\nIvxpWZQLZ49Oyfss3bArcbawcjOFeXksOGY0V54ykSkjUntj2vCyYr614CiuOGkC3338ZW5+4mV+\n+dx6rj1rKhfPGau/lJNsyfqd3LJwDc9V72BkWTE3LqjgPXPG0qdAQZJJ1Cifhi780bP0K8zn11ed\nEHYpB9Qad971f89S83ojiz97WtImGGqNO4tWbuGup6tZumEXA/oWcukJ4/nwieMZXhrOqK//CnqE\n/fu115k6oj9feMc0zjhSPcIO1/JNr3PLwjX8fc02hvYv4uNnHMEHjhsXemcPebPuNsorUNJMS2uc\nmV95gktPGM+X5qf/YIxVNXVccPszfPD4cXzzoqMO67X2NrVy/4ub+OnT1azf0cDYwX258uRJvKdy\nDP36hH8y7e48XrWZ7z6+mvU7Gjg+6BF2tHqE9djqzTG+v3ANC1duYWC/Qq4+7Qg+/PbxafHvLG+l\nXl4Z6tVte9jXEmdmmjbId1QxegCXnziRn/9jHe8+dgzHjBvU49fYvnsfv3xuA796bj27Gpo5euxA\n/u/caZwzc2RaXVoyM95xVDnzZozg1y+8xg+eXMuFP3qW+bPK+Zx6hHXLK1t3c9uTa3hkRS39+yTa\nqz5y0oQe9cyT9KVASTORDGiQ7+jas6fy6Ipabnigij994qRuN6C+um03dz+9jj+8uInm1jjzpo/g\nqlMnUTl+UFpfSirMz+PDb5/AgmNGc9dT1dz19DqeiGzmkuPH86m5UxisaWHf4rUdDdy2eA0P/ruG\n4sJ8Pn76ZP7jlEkM6KcgySYKlDQTicYoLsxjUgYNqd2/qICvvHMG/3nfi/ziH+u58pRJXe7r7ryw\nbid3PV3Nk6u2UlSQx8VzxvDRkydyxLD+vVj14SstLuTas4/kkhPGc9uTa/jlc+v5w9JNXK0eYftF\nX9/L//7lFX6/ZCP5ecZHT57I1acdoW7YWUqBkmaqauqYNrIs47pJnlsxkjOOHMb3F63pdLa7ltY4\nj0c2c9dT1SzbVMfgkj58eu4ULn37+Iyfo3tEWTHfftcsrjhp4v4eYb96bgPXnjWVd88Zk1aX7XrL\n1lgj//e3V/l//3wNgEuOH8fHz5jMcE2lm9XUKJ9G3J1ZX1vIBUeP4sYFh9fAHYaNOxs469a/c/rU\n4dxx6RwA9uxr4XdLNvLTZ9axaddeJg4t4aMnT+Tdx47J2r/gX1iX6BH20sbXOXJEKV94xzROP3JY\nWl/GS5Ydu/fxk6eq+eVz62ludd5bOYZPnDmF0ZpON6OpUT4Dbdy5l/rGloxqP2lv7OB+fGruFG56\n/GV+96+NrN+xh3uf30CssYXK8YP48vwZzJs+Iuv/Yj9u4mAe+K8TeaxqMzc9vpqP/OJfnDAp0SNs\n1pjs7BFWt7eZu5+u5mfPrGNvcysXHTOaT8+doo4KOUaBkkbaGuTTdciV7rjy5Ek88GIN1/1hOWZw\n7syRXHnKJOaM73nvr0xmZpx3VDlntesRdsHtz/LOo0fxubOPZNyQ7Ji7fPe+Fn7+zDrufLqa+sYW\n5s8q5zPzpjJ5eGa1h0lyKFDSSFW0jvw8Y2qK7wJPpT4FefzvB4/h4WW1vKdyTM7/hdq+R9idT1Vz\n99PreLyqNhgjLHN7hO1tauWXz63njr+/yq6GZs6aMYJrz5r6lqkCJLcoUNJIJBpjyvD+GX+X8LSR\nZUwbqQ+W9kqLC/ns2UfyoaBH2D3/WM/9SzKvR1hjcyu/fuE1fvTXV9m+ex+nTR3GtWdN1c2dAihQ\n0kokGuPUKcPCLkNS6M09wlbv7xH2sdMmMXpgX/r1KaBvn3z6BV+J5QL6FuaH2vbU3Brn90s28b9/\nWUttXSNvnzSEOz50LJUTBodWk6QfBUqa2BprZFv9PmamyRzyklpTRpRy92Vv45/VO/jWY6v52p9X\nHvSYooK8IGgK3ho4ffLpV9i27o3tbfu+KaQK33p8V2HVNkviDxavYePOvcwZP4hb3nM0J6bZbJ2S\nHhQoaaJtDnkFSm45ftIQHvyvE9mwo4Hd+1poaGqloamFvU2tieXmVvY2tbBnXyt7mxPbGppa92/f\n29TK1vrGt6xrao33qI4+BXmUtA+nPvn0Lcxnc6yRDTsaqBhdxtc/UsHpU3Oj+7McGgVKmmjr4TVD\ngZJzzIwJSR4Zobk1zt7mRLjsCYIqEUiJgGpoFz6J4Gp5UyC1BdeYQX354nnTOXuGZkmUg1OgpIlI\nNMaEIf00SJ4kRWF+HoX5eZTp90l6UWaN75HFqqJ1GXtDo4gIKFDSQt3eZjbu3KvLXSKS0RQoaWCl\nGuRFJAsoUNJAJs6BIiLSkQIlDUSiMUaUFTGsNLOHcReR3KZASQMRNciLSBZQoIRsb1Mrr2zdTYXa\nT0QkwylQQrZ6c4y4wwydoYhIhlOghExDrohItgglUMzsZjNbbWbLzewBMxsYrL/EzF5q9xU3s9md\nHD/YzBaZ2drgMWNnb4pEYwzoW8iYQZoiVUQyW1hnKIuACnefBawBrgdw9/vcfba7zwYuBda5+0ud\nHP8FYLG7TwEWB88z0spoHTNHlWmcJBHJeKEEirsvdPeW4OnzwJhOdvsA8JsuXuJC4J5g+R7gouRW\n2DuaW+Os2lyvy10ikhXSoQ3lCuCxTta/D/h1F8eMcPfaYHkzMKKrFzezq8xsiZkt2bZt2+FVmmSv\nbttNU0tcXYZFJCukLFDM7Ekzq+rk68J2+9wAtAD3dTj2eKDB3asO9j7u7oAfYPud7l7p7pXDhqXX\nbIiRGjXIi0j2SNnw9e4+70DbzexyYD4wNwiF9t5P12cnAFvMrNzda82sHNh6WMWGJBKNUVyYx6Rh\n/cMuRUTksIXVy+tc4DrgAndv6LAtD3gvXbefAPwJuCxYvgx4KBV1plpVtI7p5WWhzhUuIpIsYbWh\n3A6UAouC7sF3tNt2KrDR3avbH2Bmd5tZZfD0O8BZZrYWmBc8zyjxuLMqGtPlLhHJGqHM2Ojukw+w\n7W/ACZ2sv7Ld8g5gbkqK6yUbdzVQv6+FCjXIi0iWSIdeXjmpan+DvAJFRLKDAiUkkWgdBXnG1JFq\nkBeR7HDQQDGzfDO7pjeKySWRaIzJw/tTVJAfdikiIklx0EBx91YSd61Lkrg7kWgdFaN1uUtEskd3\nG+WfNbPbgd8Ce9pWuvuLKakqy22t38f23U3q4SUiWaW7gdI24u/X261z4MzklpMbNIe8iGSjbgWK\nu5+R6kJySduQK9PLS0OuREQkebrVy8vMBpjZ99sGWTSzW8xMf14fokg0xsShJZQWF4ZdiohI0nS3\n2/DPgHoSQ6K8F4gBP09VUdmuKlrHDLWfiEiW6W4byhHu/u52z79mZp1NfCUHUdfQzKZde/ng8ePC\nLkVEJKm6e4ay18xObntiZicBe1NTUnaL1CYa5DXkiohkm+6eoVwN/LJdu8ku3hjtV3pAc6CISLY6\naKAEw8kf6e5Hm1kZgLvHUl5ZlopE6xhZVsyQ/kVhlyIiklTduVM+TmLuEtw9pjA5PBENWS8iWaq7\nbShPmtl/m9lYMxvc9pXSyrLQ3qZWXt22m5kackVEslB321DeFzx+vN06ByYlt5zstmpzjLir/URE\nslN321A+5O7P9kI9WS0SVYO8iGSv7rah3N4LtWS9ldE6BvQtZPTAvmGXIiKSdN1tQ1lsZu82M0tp\nNVkuEo1RMboM/RhFJBt1N1A+BvwO2GdmMTOrNzP19uqB5tY4q2vrNcKwiGSt7jbKDwAuASa6+9fN\nbBxQnrqyss8rW3fT1BpX+4mIZK3unqH8CDiBN2ZurEftKj3yRoO8zlBEJDt19wzleHc/1sz+DeDu\nu8ysTwrryjqRaB19C/OZOLQk7FJERFKiu2cozWaWT+LeE8xsGBBPWVVZKFITY3p5Kfl5apAXkezU\n3UD5IfAAMNzMbgSeAb6VsqqyTDzurKyN6XKXiGS17k4BfJ+ZLQXmAgZc5O6rUlpZFnltZwO797VQ\nMVoN8iKSvbrbhoK7rwZWp7CWrFUVTcyBojMUEclm3b3kJYchEo1RkGdMGdE/7FJERFJGgdILItEY\nU0aUUlSQH3YpIiIpo0BJMXcnUlNHhW5oFJEsp0BJsS2xfezY06Q75EUk6ylQUizS1iCvSbVEJMsp\nUFIsEo1hBtPLdYYiItlNgZJikWgdE4eU0L+o2z20RUQykgIlxapqYsxQ+4mI5AAFSgq93tBEzet7\ndUOjiOQEBUoKrQyGrNeQKyKSC0IJFDO72cxWm9lyM3vAzAYG6y8xs5fafcXNbHYnx3/VzGra7Xde\n738XB6chV0Qkl4R1hrIIqHD3WcAa4HpIDELp7rPdfTZwKbDO3V/q4jVubdvX3R/tnbJ7JhKNUT6g\nmMElmjpGRLJfKIHi7gvdvSV4+jwwppPdPgD8pveqSr5INKYbGkUkZ6RDG8oVwGOdrH8f8OsDHPeJ\n4JLZz8xsUFc7mdlVZrbEzJZs27btcGvttoamFqq37dblLhHJGSkLFDN70syqOvm6sN0+NwAtwH0d\njj0eaHD3qi5e/sfAEcBsoBa4pas63P1Od69098phw4Yd7rfVbatq64k7OkMRkZyRsrvt3H3egbab\n2eXAfGCuu3uHze/nAGcn7r6l3evcBTx86JWmxkoNuSIiOSaU27fN7FzgOuA0d2/osC0PeC9wygGO\nL3f32uDpAqCrM5nQRKIxBvUrZNSA4rBLERHpFWG1odwOlAKLgm6/d7Tbdiqw0d2r2x9gZnebWWXw\n9CYzW2Fmy4EzgGt6peoeSDTID8DMwi5FRKRXhHKG4u6TD7Dtb8AJnay/st3ypampLDmaW+O8vLme\nj5w0IexSRER6TTr08so6a7fspqk1rjG8RCSnKFBSoG0OlAo1yItIDlGgpEAkGqNfn3wmDikJuxQR\nkV6jQEmBSLSO6eVl5OWpQV5EcocCJcnicWelhlwRkRykQEmyDTsb2NPUSoWGXBGRHKNASbKqmkSD\nvHp4iUiuUaAkWSQaozDfmDqiNOxSRER6lQIlySLROqaOKKVPgX60IpJb9KmXRO5qkBeR3KVASaLN\nsUZ27GnSHCgikpMUKEkUqYkBmgNFRHKTAiWJItEYZjC9XIEiIrlHgZJEVdE6Jg4toaQolEGcRURC\npUBJopXBHCgiIrlIgZIku/Y0UfP6XrWfiEjOUqAkycraRIO8hlwRkVylQEmStiFXdIYiIrlKgZIk\nkWiMUQOKGVTSJ+xSRERCoUBJkki0jpmaoVFEcpgCJQkamlqo3r5Hl7tEJKcpUJJgVW0Md9RlWERy\nmgIlCSJRDbkiIqJASYJITYzBJX0oH1AcdikiIqFRoCRBVbSOmaPKMLOwSxERCY0C5TA1tcRZs6Ve\nU/6KSM5ToBymtVvraW51NciLSM5ToBymtgb5Cp2hiEiOU6AcpkhNHSV98pkwpCTsUkREQqVAOUyR\naIzp5WXk5alBXkRymwLlMMTjzqraGBUackVERIFyONbv2MOeplb18BIRQYFyWKp0h7yIyH4KlMMQ\nidZRmG9MGV4adikiIqFToByGldEYR44spU+BfowiIvokPETuTlVNHTPL1SAvIgIhBoqZ3Wxmq81s\nuZk9YGYDg/WFZnaPma0ws1Vmdn0Xx080s3+a2Stm9lsz69WpEmvrGtnV0MzM0Wo/ERGBcM9QFgEV\n7j4LWAO0Bcd7gCJ3PwqYA3zMzCZ0cvx3gVvdfTKwC/hoyituR0PWi4i8WWiB4u4L3b0lePo8MKZt\nE1BiZgVAX6AJiLU/1hLD+p6Vly6AAAAJ5UlEQVQJ3B+suge4KOVFtxOJ1mEG08sVKCIikD5tKFcA\njwXL9wN7gFrgNeB77r6zw/5DgNfbBdImYHRvFNqmqibGpKEl9OtT0JtvKyKStlL6aWhmTwIjO9l0\ng7s/FOxzA9AC3BdsOw5oBUYBg4CnzexJd68+xBquAq4CGDdu3KG8RKdWRuuonDA4aa8nIpLpUhoo\n7j7vQNvN7HJgPjDX3T1Y/UHgcXdvBraa2bNAJdA+UHYAA82sIDhLGQPUdFHDncCdAJWVld7ZPj21\na08T0bpGKtQgLyKyX5i9vM4FrgMucPeGdpteI9E+gpmVACcAq9sfG4TPX4GLg1WXAQ+luuY2bzTI\nq8uwiEibMNtQbgdKgUVm9pKZ3RGs/xHQ38wiwL+An7v7cgAze9TMRgX7fR641sxeIdGm8tPeKrwq\nWgeoh5eISHuhtSgH3X07W7+bRNfhzrad1265mkR7S6+LRGOMHtiXgf169dYXEZG0li69vDJKJFqn\nsxMRkQ4UKD20Z18L67bvUfuJiEgHCpQeWlUbw13tJyIiHSlQemh/Dy91GRYReRMFSg9FonUMKenD\nyLLisEsREUkrCpQeqqqJMWNUGYnhxEREpI0CpQeaWuKs3VqvBnkRkU4oUHpgzZZ6mltdQ66IiHRC\ngdIDKzXkiohIlxQoPVAVraN/UQHjB/cLuxQRkbSjQOmBSDTG9PJS8vLUIC8i0pECpZta486q2pgu\nd4mIdEGB0k3rd+yhoalVd8iLiHRBgdJNVTVtQ9brDEVEpDMKlG5aGY3RJz+PKSP6h12KiEhaUqB0\nUyQa48iRpRTm60cmItIZfTp2g7tTpTlQREQOSIHSDdG6Rl5vaFagiIgcgAKlGyJtDfKj1SAvItIV\nBUo3RKIx8gymj9QZiohIVxQo3VBaXMCZ04bTt09+2KWIiKStgrALyARXnjKJK0+ZFHYZIiJpTWco\nIiKSFAoUERFJCgWKiIgkhQJFRESSQoEiIiJJoUAREZGkUKCIiEhSKFBERCQpzN3DrqHXmNk2YMMh\nHj4U2J7EcpJFdfWM6uoZ1dUz6VoXHF5t49192MF2yqlAORxmtsTdK8OuoyPV1TOqq2dUV8+ka13Q\nO7XpkpeIiCSFAkVERJJCgdJ9d4ZdQBdUV8+orp5RXT2TrnVBL9SmNhQREUkKnaGIiEhSKFBERCQp\nFCgHYWZjzeyvZrbSzCJm9umwa2rPzPLN7N9m9nDYtbQxs4Fmdr+ZrTazVWb29rBrAjCza4J/wyoz\n+7WZFYdUx8/MbKuZVbVbN9jMFpnZ2uBxUJrUdXPw77jczB4ws4HpUFe7bZ81MzezoelSl5l9MviZ\nRczspnSoy8xmm9nzZvaSmS0xs+NS8d4KlINrAT7r7jOAE4CPm9mMkGtq79PAqrCL6OAHwOPuPg04\nmjSoz8xGA58CKt29AsgH3h9SOb8Azu2w7gvAYnefAiwOnve2X/DWuhYBFe4+C1gDXN/bRdF5XZjZ\nWOBs4LXeLijwCzrUZWZnABcCR7v7TOB76VAXcBPwNXefDfxP8DzpFCgH4e617v5isFxP4sNxdLhV\nJZjZGOB84O6wa2ljZgOAU4GfArh7k7u/Hm5V+xUAfc2sAOgHRMMowt2fAnZ2WH0hcE+wfA9wUa8W\nRed1uftCd28Jnj4PjEmHugK3AtcBofQs6qKu/wS+4+77gn22pkldDpQFywNI0e++AqUHzGwCcAzw\nz3Ar2e82Ev+h4mEX0s5EYBvw8+BS3N1mVhJ2Ue5eQ+KvxdeAWqDO3ReGW9WbjHD32mB5MzAizGK6\ncAXwWNhFAJjZhUCNuy8Lu5YOpgKnmNk/zezvZva2sAsKfAa42cw2kvh/kJIzTQVKN5lZf+APwGfc\nPZYG9cwHtrr70rBr6aAAOBb4sbsfA+whnMs3bxK0SVxIIvBGASVm9qFwq+qcJ/ryp1V/fjO7gcTl\n3/vSoJZ+wBdJXLpJNwXAYBKXxz8H/M7MLNySgMSZ0zXuPha4huAKQrIpULrBzApJhMl97v7HsOsJ\nnARcYGbrgd8AZ5rZveGWBMAmYJO7t53F3U8iYMI2D1jn7tvcvRn4I3BiyDW1t8XMygGCx16/VNIV\nM7scmA9c4ulx49oRJP4wWBb8/o8BXjSzkaFWlbAJ+KMnvEDi6kGvdxjoxGUkfucBfg+oUT4MwV8X\nPwVWufv3w66njbtf7+5j3H0Cicblv7h76H9xu/tmYKOZHRmsmgusDLGkNq8BJ5hZv+DfdC5p0Fmg\nnT+R+E9P8PhQiLXsZ2bnkriseoG7N4RdD4C7r3D34e4+Ifj93wQcG/zuhe1B4AwAM5sK9CE9Rh+O\nAqcFy2cCa1PyLu6urwN8ASeTuPywHHgp+Dov7Lo61Hg68HDYdbSrZzawJPiZPQgMCrumoK6vAauB\nKuBXQFFIdfyaRDtOM4kPw48CQ0j07loLPAkMTpO6XgE2tvvdvyMd6uqwfT0wNB3qIhEg9wa/Yy8C\nZ6ZJXScDS4FlJNqA56TivTX0ioiIJIUueYmISFIoUEREJCkUKCIikhQKFBERSQoFioiIJIUCRURE\nkkKBIpJmzGz9oQ7HbmaXm9moZLyWSE8pUESyy+UkxioT6XUKFJEumNmEYKKkX5jZGjO7z8zmmdmz\nwURYxwVfzwUjK/+jbciZYDKvnwXLRwWTevXr4n2GmNnCYEKmuwFrt+1DZvZCMDHST8wsP1i/28xu\nDY5ZbGbDzOxioBK4L9i/b/AynzSzF81shZlNS+XPTHKbAkXkwCYDtwDTgq8PkhjG4r9JjHi7GjjF\nEyMr/w/wreC4HwCTzWwB8HPgY971WFhfAZ7xxIRMDwDjAMxsOvA+4CRPTIzUClwSHFMCLAmO+Tvw\nFXe/n8SQN5e4+2x33xvsu93djwV+HNQtkhIFYRcgkubWufsKADOLkJhV0c1sBTCBxGRF95jZFBJj\nvhUCuHs8GKV3OfATd3/2AO9xKvCu4LhHzGxXsH4uMAf4VzACel/eGIU4Dvw2WL6XN0aS7UzbtqVt\n7yOSCgoUkQPb12453u55nMT/n28Af3X3BcEEbH9rt/8UYDeH3qZhwD3u3p3JkA40KF9bza3o/7yk\nkC55iRyeAUBNsHx528pgKuQfkjj7GBK0b3TlKRKX0jCzdwCDgvWLgYvNbHiwbbCZjQ+25QFtr/lB\n4JlguR4oPYzvR+SQKVBEDs9NwLfN7N+8+a//W4EfufsaEsOHf6ctGDrxNeDU4JLau0jM3YK7rwS+\nBCw0s+XAIqA8OGYPcJyZVZGY3+LrwfpfAHd0aJQX6RUavl4kA5nZbnfvH3YdIu3pDEVERJJCZygi\nvcTMPgJ8usPqZ93942HUI5JsChQREUkKXfISEZGkUKCIiEhSKFBERCQpFCgiIpIU/x/+OFf5ZO0s\n+AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
}
]
}