Skip to content

🍳 [CVPR'24 Highlight] Pytorch implementation of "Taming Stable Diffusion for Text to 360° Panorama Image Generation"

License

Notifications You must be signed in to change notification settings

chengzhag/PanFusion

Repository files navigation

PanFusion

Taming Stable Diffusion for Text to 360° Panorama Image Generation

Cheng Zhang, Qianyi Wu, Camilo Cruz Gambardella, Xiaoshui Huang, Dinh Phung, Wanli Ouyang, Jianfei Cai

teaser

Introduction

This repo contains data preprocessing, training, testing, evaluation code of our CVPR 2024 paper.

Installation

We use Anaconda to manage the environment. You can create the environment by running the following command:

git clone https://github.com/chengzhag/PanFusion
cd PanFusion
conda env create -f environment.yaml
conda activate panfusion

If you are having issue with conda solving environment, or any other issues that might be caused by the version of the packages, you can try to create the environment with specific version of the packages:

conda env create -f environment_strict.yaml

We use wandb to log and visualize the training process. You can create an account then login to wandb by running the following command:

wandb login

We provide the wandb report for identifying issues when reproducing the results.

Demo

You can download the pretrained checkpoints last.ckpt and put it in the logs/4142dlo4/checkpoints folder. Then run the following command to test the model:

WANDB_MODE=offline WANDB_RUN_ID=4142dlo4 python main.py predict --data=Matterport3D --model=PanFusion --ckpt_path=last

The generated images are saved in the logs/4142dlo4/predict folder.

We also provide out-of-domain prompts for testing:

WANDB_MODE=offline WANDB_RUN_ID=4142dlo4 python main.py predict --data=Demo --model=PanFusion --ckpt_path=last

Data Preparation

Download Data

We follow MVDiffusion to download the Matterport3D skybox dataset. Specifically, please fill the sign the form to request a download script download_mp.py and put it in the data/Matterport3D folder. Then run the following command to download and unzip the data:

cd data/Matterport3D
python download_mp.py -o ./Matterport3D --type matterport_skybox_images
python unzip_skybox.py

We also use the splits provided by MVDiffusion. Please download it to data/Matterport3D and unzip it with the following command:

cd data/Matterport3D
tar -xvf mp3d_skybox.tar

Stitch Matterport3D Skybox

The Matterport3D skybox images are stitched into equirectangular projection images for training. Please run the following command to stitch the images:

python -m scripts.stitch_mp3d

The stitched images are saved in the data/Matterport3D/mp3d_skybox/*/matterport_stitched_images folder.

Caption Images

We use the perspective image captions generated by MVDiffusion for evaluation. Please download the captions mp3d_skybox.tar and put it in the data/Matterport3D folder. Then run the following command to unzip the captions:

cd data/Matterport3D
tar -xvf mp3d_skybox.tar

We use blip to caption the equirectangular images for training. You can download the generated captions mp3d_stitched_caption.tar and put it in the data/Matterport3D folder. Then run the following command to unzip the captions:

cd data/Matterport3D
tar -xvf mp3d_stitched_caption.tar
Do it yourself

Alternatively, you can use the following command to generate the captions yourself:

python -m scripts.caption_mp3d

Render Layout

We use the Matterport3DLayoutAnnotation dataset to render the layout for layout-conditioned panorama generation. You can download the generated layout renderings mp3d_layout.tar and put it in the data/Matterport3D folder. Then run the following command to unzip the layout renderings:

cd data/Matterport3D
tar -xvf mp3d_layout.tar
Do it yourself

Alternatively, you can run the following command to download the layout labels and render the layout yourself:

cd data
git clone https://github.com/ericsujw/Matterport3DLayoutAnnotation
cd Matterport3DLayoutAnnotation
unzip label_data.zip
cd ../..
python -m scripts.render_layout

Align Matterport3D Images

The Matterport3DLayoutAnnotation is annotated using PanoAnnotator tool. Before annotating, the Matterport3D images are Manhattan-aligned using this Matlab tool. Please download the tool to external folder and unzip with the following command:

cd external
unzip preprocess.zip

Then run our provided Matlab script preprocess_mp3d.m to align the Matterport3D images.

Training and Testing

FAED

We train FAED model to evaluate the quality of the generated panorama images. You can download a pretrained checkpoint faed.ckpt and put it in the weights folder.

Do it yourself

Alternatively, you can train the FAED model yourself by running the following command:

WANDB_NAME=faed python main.py fit --data=Matterport3D --model=FAED --trainer.max_epochs=60 --data.batch_size=4

Then copy the checkpoint to the weights folder and rename for later use. The training takes about 4 hours on a single NVIDIA A100 GPU.


Hint: Experiment is logged and visualized to wandb under the panfusion project. You'll get a WANDB_RUN_ID (e.g., ek6ab466) after running the command. Or you can find it in the wandb dashboard. The checkpoints are saved in the logs/<WANDB_RUN_ID>/checkpoints folder. Same for the following experiments.

HorizonNet

We train HorizonNet model to evaluate layout-conditioned panorama generation. You can download a pretrained checkpoint horizonnet.ckpt and put it in the weights folder.

Do it yourself

Alternatively, you can download the official checkpoint resnet50_rnn__st3d.pth to the weights folder and finetune the HorizonNet model yourself by running the following command:

WANDB_NAME=horizonnet python main.py fit --data=Matterport3D --model=HorizonNet --data.layout_cond_type=distance_map --data.horizon_layout=True --data.batch_size=4 --data.rand_rot_img=True --trainer.max_epochs=10 --model.ckpt_path=weights/resnet50_rnn__st3d.pth --data.num_workers=32

Then copy the checkpoint to the weights folder and rename for later use. The training takes about 3 hours on a single NVIDIA A100 GPU.


Text-to-Image Generation

We train the text-to-image generation model by running the following command:

WANDB_NAME=panfusion python main.py fit --data=Matterport3D --model=PanFusion

The training takes about 7 hours on 4x NVIDIA A100 GPU. The log is available at wandb.

Assuming the WANDB_RUN_ID is PANFUSION_ID, you can test the model by running the following command:

WANDB_RUN_ID=<PANFUSION_ID> python main.py test --data=Matterport3D --model=PanFusion  --ckpt_path=last
WANDB_RUN_ID=<PANFUSION_ID> python main.py test --data=Matterport3D --model=EvalPanoGen

The test results will be saved in the logs/<PANFUSION_ID>/test folder and the evaluation results will be logged to wandb.

Layout-conditioned Panorama Generation

Based on the trained text-to-image generation model, we further finetune a ControlNet model for layout-conditioned panorama generation:

WANDB_NAME=panfusion_lo python main.py fit --data=Matterport3D --model=PanFusion --trainer.max_epochs 100 --trainer.check_val_every_n_epoch 10 --model.ckpt_path=logs/<PANFUSION_ID>/checkpoints/last.ckpt --model.layout_cond=True --data.layout_cond_type=distance_map --data.uncond_ratio=0.5

Assuming the WANDB_RUN_ID is PANFUSION_ID, you can test the model by running the following command:

WANDB_RUN_ID=<PANFUSION_LO_ID> python main.py test --data=Matterport3D --model=PanFusion --ckpt_path=last --model.layout_cond=True --data.layout_cond_type=distance_map
WANDB_RUN_ID=<PANFUSION_LO_ID> python main.py test --data=Matterport3D --model=EvalPanoGen --data.manhattan_layout=True

Citation

If you find our work helpful, please consider citing:

@inproceedings{panfusion2024,
  title={Taming Stable Diffusion for Text to 360◦ Panorama Image Generation},
  author={Zhang, Cheng and Wu, Qianyi and Cruz Gambardella, Camilo and Huang, Xiaoshui and Phung, Dinh and Ouyang, Wanli and Cai, Jianfei},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2024}
}

About

🍳 [CVPR'24 Highlight] Pytorch implementation of "Taming Stable Diffusion for Text to 360° Panorama Image Generation"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published