Skip to content

A collection of MuJoCo based environments.

License

Notifications You must be signed in to change notification settings

chinganc/mj_envs

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mujoco Environments

mj_envs is a collection of environments/tasks simulated with the Mujoco physics engine and wrapped in the OpenAI gym API.

Getting Started

mj_envs uses git submodules to resolve dependencies. Please follow steps exactly as below to install correctly.

  1. Clone this repo with pre-populated submodule dependencies
$ git clone --recursive https://github.com/vikashplus/mj_envs.git
  1. Install package using pip
$ pip install -e .

OR Add repo to pythonpath by updating ~/.bashrc or ~/.bash_profile

export PYTHONPATH="<path/to/mj_envs>:$PYTHONPATH"
  1. You can visualize the environments with random controls using the below command
$ python utils/visualize_env.py --env_name hammer-v0

NOTE: If the visualization results in a GLFW error, this is because mujoco-py does not see some graphics drivers correctly. This can usually be fixed by explicitly loading the correct drivers before running the python script. See this page for details.

modules

mj_envs contains a variety of environements, which are organized as modules. Each module is a collection of loosely related environements. Following modules are provided at the moment with plans to improve the diversity of the collection.

1. Hand Manipulation Suite (HMS)

HMS contains a collection of environements centered around dexterous manipulation with anthroporphic 24 degrees of freedom Adroit Hand. These environments were designed for the publication: Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations, RSS2018.

Hand-Manipulation-Suite Tasks (video)
Alt text

2. More coming soon

About

A collection of MuJoCo based environments.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%