## 克隆仓库 clone repository
git clone git@github.com:chunbai1/ECCV-CVPPA-2024-MOT.git
cd ECCV-CVPPA-2024-MOT
## torch
conda create -n bytetrack python=3.7
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
## other package
pip3 install -r requirements.txt
python3 setup.py develop
pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
pip3 install cython_bbox
First, download source dataset from official Link. Then follow the steps below to process the data into the MOT20 dataset format.
After downloading the official dataset and decompressing it, the format is as follows:
.MOT_ECCV_2024
├── depth
├── mask2former_output
├── rgb
└── weak_labels
According to the official dataset description file, the following dataset format is obtained:
.
├── test
│ ├── depth
│ ├── mask2former_output
│ ├── mask2former_txt
│ ├── rgb
│ └── weak_labels
├── train
│ ├── depth
│ ├── mask2former_output
│ ├── rgb
│ └── weak_labels
└── valid
├── depth
├── mask2former_output
├── rgb
└── weak_labels
Then set the --subset
parameters to 'train', 'val', 'test'
respectively, and execute the my_toos/convert2mot20.py
file, convert the MOT20 data format
to COCO format
by my_tools/convert2coco.py
. So the data format is converted to:
.
├── annotations
│ ├── test.json
│ ├── train.json
│ ├── train_half.json
│ └── val_half.json
├── test
├── train
Finally, create a dataset
directory and establish a soft link
according to the my_tools/mix_data.py
file to get the final dataset.
Change the exps/example/mot/yolox_x_mix_det.py
configuration to get exps/example/mot/yolox_x_mix_det_cvppa.py
file. You can refer ByteTrack_README.md
.
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 tools/train.py -f exps/example/mot/yolox_x_mix_det_cvppa.py -d 4 -b 16 --fp16 -o \
-c /data/ChaiJM/Competition/CVPPA-DMOT/Code/ByteTrack-main/YOLOX_outputs/yolox_x_mix_det_cvppa/latest_ckpt.pth.tar \
-expn cvppa_resume -e 4
CUDA_VISIBLE_DEVICES=7 python tools/demo_track_cvppa.py --save_result -expn cvppa-test5 \
-c pth
Refer blog.