Table of Contents generated with DocToc
- syntaxnet
- description
- how to test
- download univeral dependency treebank data( http://universaldependencies.org/#en )
- training tagger and parser with another corpus
- training parser only
- test new model
- training parser from korean sejong treebank corpus
- test korean parser model
- apply korean POS tagger(Komoran via konlpy)
- tensorflow serving and syntaxnet
- parsey's cousins
- comparison to BIST parser
- test code for syntaxnet
- last update : 2016. 8. 16
- after syntaxnet last commit
- add 'char-map' to context.pbtxt' for train
- add '--resource_dir' for test
- remove path to each files in 'context.pbtxt'
- if you installed old syntaxnet version(ex, a4b7bb9a5dd2c021edcd3d68d326255c734d0ef0 ), you should specify path to each files in 'context.pbtxt'
(after installing syntaxnet)
$ pwd
/path/to/models/syntaxnet
$ git clone https://github.com/dsindex/syntaxnet.git work
$ cd work
$ echo "hello syntaxnet" | ./demo.sh
(training parser only with parsed corpus)
$ ./parser_trainer_test.sh
download univeral dependency treebank data( http://universaldependencies.org/#en )
$ cd work
$ mkdir corpus
$ cd corpus
(downloading ud-treebanks-v1.2.tgz)
$ tar -zxvf ud-treebanks-v1.2.tgz
$ ls universal-dependencies-1.2
$ UD_Ancient_Greek UD_Basque UD_Czech ....
(for example, training UD_English)
(detail instructions can be found
in https://github.com/tensorflow/models/tree/master/syntaxnet)
$ ./train.sh -v -v
...
#preprocessing with tagger
INFO:tensorflow:Seconds elapsed in evaluation: 9.77, eval metric: 99.71%
INFO:tensorflow:Seconds elapsed in evaluation: 1.26, eval metric: 92.04%
INFO:tensorflow:Seconds elapsed in evaluation: 1.26, eval metric: 92.07%
...
#pretrain parser
INFO:tensorflow:Seconds elapsed in evaluation: 4.97, eval metric: 82.20%
...
#evaluate pretrained parser
INFO:tensorflow:Seconds elapsed in evaluation: 44.30, eval metric: 92.36%
INFO:tensorflow:Seconds elapsed in evaluation: 5.42, eval metric: 82.67%
INFO:tensorflow:Seconds elapsed in evaluation: 5.59, eval metric: 82.36%
...
#train parser
INFO:tensorflow:Seconds elapsed in evaluation: 57.69, eval metric: 83.95%
...
#evaluate parser
INFO:tensorflow:Seconds elapsed in evaluation: 283.77, eval metric: 96.54%
INFO:tensorflow:Seconds elapsed in evaluation: 34.49, eval metric: 84.09%
INFO:tensorflow:Seconds elapsed in evaluation: 34.97, eval metric: 83.49%
...
(in case you have other pos-tagger
and want to build parser only from the parsed corpus)
$ ./train_p.sh -v -v
...
#pretrain parser
...
#evaluate pretrained parser
INFO:tensorflow:Seconds elapsed in evaluation: 44.15, eval metric: 92.21%
INFO:tensorflow:Seconds elapsed in evaluation: 5.56, eval metric: 87.84%
INFO:tensorflow:Seconds elapsed in evaluation: 5.43, eval metric: 86.56%
...
#train parser
...
#evaluate parser
INFO:tensorflow:Seconds elapsed in evaluation: 279.04, eval metric: 94.60%
INFO:tensorflow:Seconds elapsed in evaluation: 33.19, eval metric: 88.60%
INFO:tensorflow:Seconds elapsed in evaluation: 32.57, eval metric: 87.77%
...
$ echo "this is my own tagger and parser" | ./test.sh
...
Input: this is my own tagger and parser
Parse:
tagger NN ROOT
+-- this DT nsubj
+-- is VBZ cop
+-- my PRP$ nmod:poss
+-- own JJ amod
+-- and CC cc
+-- parser NN conj
* original model
$ echo "this is my own tagger and parser" | ./demo.sh
Input: this is my own tagger and parser
Parse:
tagger NN ROOT
+-- this DT nsubj
+-- is VBZ cop
+-- my PRP$ poss
+-- own JJ amod
+-- and CC cc
+-- parser ADD conj
$ echo "Bob brought the pizza to Alice ." | ./test.sh
Input: Bob brought the pizza to Alice .
Parse:
brought VBD ROOT
+-- Bob NNP nsubj
+-- pizza NN dobj
| +-- the DT det
+-- Alice NNP nmod
| +-- to IN case
+-- . . punct
* original model
$ echo "Bob brought the pizza to Alice ." | ./demo.sh
Input: Bob brought the pizza to Alice .
Parse:
brought VBD ROOT
+-- Bob NNP nsubj
+-- pizza NN dobj
| +-- the DT det
+-- to IN prep
| +-- Alice NNP pobj
+-- . . punct
$ ./sejong/split.sh
$ ./sejong/c2d.sh
$ ./train_sejong.sh
#pretrain parser
...
NFO:tensorflow:Seconds elapsed in evaluation: 14.18, eval metric: 93.43%
...
#evaluate pretrained parser
INFO:tensorflow:Seconds elapsed in evaluation: 116.08, eval metric: 95.11%
INFO:tensorflow:Seconds elapsed in evaluation: 14.60, eval metric: 93.76%
INFO:tensorflow:Seconds elapsed in evaluation: 14.45, eval metric: 93.78%
...
#evaluate pretrained parser by eoj-based
accuracy(UAS) = 0.903289
accuracy(UAS) = 0.876198
accuracy(UAS) = 0.876888
...
#train parser
INFO:tensorflow:Seconds elapsed in evaluation: 137.36, eval metric: 94.12%
...
#evaluate parser
INFO:tensorflow:Seconds elapsed in evaluation: 1806.21, eval metric: 96.37%
INFO:tensorflow:Seconds elapsed in evaluation: 224.40, eval metric: 94.19%
INFO:tensorflow:Seconds elapsed in evaluation: 223.75, eval metric: 94.25%
...
#evaluate parser by eoj-based
accuracy(UAS) = 0.928845
accuracy(UAS) = 0.886139
accuracy(UAS) = 0.887824
...
$ cat sejong/tagged_input.sample
1 프랑스 프랑스 NNP NNP _ 0 _ _ _
2 의 의 JKG JKG _ 0 _ _ _
3 세계 세계 NNG NNG _ 0 _ _ _
4 적 적 XSN XSN _ 0 _ _ _
5 이 이 VCP VCP _ 0 _ _ _
6 ᆫ ᆫ ETM ETM _ 0 _ _ _
7 의상 의상 NNG NNG _ 0 _ _ _
8 디자이너 디자이너 NNG NNG _ 0 _ _ _
9 엠마누엘 엠마누엘 NNP NNP _ 0 _ _ _
10 웅가로 웅가로 NNP NNP _ 0 _ _ _
11 가 가 JKS JKS _ 0 _ _ _
12 실내 실내 NNG NNG _ 0 _ _ _
13 장식 장식 NNG NNG _ 0 _ _ _
14 용 용 XSN XSN _ 0 _ _ _
15 직물 직물 NNG NNG _ 0 _ _ _
16 디자이너 디자이너 NNG NNG _ 0 _ _ _
17 로 로 JKB JKB _ 0 _ _ _
18 나서 나서 VV VV _ 0 _ _ _
19 었 었 EP EP _ 0 _ _ _
20 다 다 EF EF _ 0 _ _ _
21 . . SF SF _ 0 _ _ _
$ cat sejong/tagged_input.sample | ./test_sejong.sh -v -v
Input: 프랑스 의 세계 적 이 ᆫ 의상 디자이너 엠마누엘 웅가로 가 실내 장식 용 직물 디자이너 로 나서 었 다 .
Parse:
. SF ROOT
+-- 다 EF MOD
+-- 었 EP MOD
+-- 나서 VV MOD
+-- 가 JKS NP_SBJ
| +-- 웅가로 NNP MOD
| +-- 디자이너 NNG NP
| | +-- 의 JKG NP_MOD
| | | +-- 프랑스 NNP MOD
| | +-- ᆫ ETM VNP_MOD
| | | +-- 이 VCP MOD
| | | +-- 적 XSN MOD
| | | +-- 세계 NNG MOD
| | +-- 의상 NNG NP
| +-- 엠마누엘 NNP NP
+-- 로 JKB NP_AJT
+-- 디자이너 NNG MOD
+-- 직물 NNG NP
+-- 실내 NNG NP
+-- 용 XSN NP
+-- 장식 NNG MOD
* install konlpy ( http://konlpy.org/ko/v0.4.3/ )
$ python sejong/tagger.py
나는 학교에 간다.
1 나 나 NP NP _ 0 _ _ _
2 는 는 JX JX _ 0 _ _ _
3 학교 학교 NNG NNG _ 0 _ _ _
4 에 에 JKB JKB _ 0 _ _ _
5 가 가 VV VV _ 0 _ _ _
6 ㄴ다 ㄴ다 EF EF _ 0 _ _ _
7 . . SF SF _ 0 _ _ _
$ echo "나는 학교에 간다." | python sejong/tagger.py | ./test_sejong.sh
Input: 나 는 학교 에 가 ㄴ다 .
Parse:
. SF ROOT
+-- ㄴ다 EF MOD
+-- 가 VV MOD
+-- 는 JX NP_SBJ
| +-- 나 NP MOD
+-- 에 JKB NP_AJT
+-- 학교 NNG MOD
$ bazel-bin/tensorflow_serving/example/parsey_client --server=localhost:9000
나는 학교에 간다
nput : 나는 학교에 간다
Parsing :
{"result": [{"text": "나 는 학교 에 가 ㄴ다", "token": [{"category": "NP", "head": 1, "end": 2, "label": "MOD", "start": 0, "tag": "NP", "word": "나"}, {"category": "JX", "head": 4, "end": 6, "label": "NP_SBJ", "start": 4, "tag": "JX", "word": "는"}, {"category": "NNG", "head": 3, "end": 13, "label": "MOD", "start": 8, "tag": "NNG", "word": "학교"}, {"category": "JKB", "head": 4, "end": 17, "label": "NP_AJT", "start": 15, "tag": "JKB", "word": "에"}, {"category": "VV", "head": 5, "end": 21, "label": "MOD", "start": 19, "tag": "VV", "word": "가"}, {"category": "EC", "end": 28, "label": "ROOT", "start": 23, "tag": "EC", "word": "ㄴ다"}], "docid": "-:0"}]}
...
- a collection of pretrained syntactic models
- how to test
# download models from http://download.tensorflow.org/models/parsey_universal/<language>.zip
$ echo "Bob brought the pizza to Alice." | ./parse.sh
# tokenizing
Bob brought the pizza to Alice .
# morphological analysis
1 Bob _ _ _ Number=Sing|fPOS=PROPN++NNP 0 _ _ _
2 brought _ _ _ Mood=Ind|Tense=Past|VerbForm=Fin|fPOS=VERB++VBD 0 _ _ _
3 the _ _ _ Definite=Def|PronType=Art|fPOS=DET++DT 0 _ _ _
4 pizza _ _ _ Number=Sing|fPOS=NOUN++NN 0 _ _ _
5 to _ _ _ fPOS=ADP++IN 0 _ _ _
6 Alice _ _ _ Number=Sing|fPOS=PROPN++NNP 0 _ _ _
7 . _ _ _ fPOS=PUNCT++. 0 _ _ _
# tagging
1 Bob _ PROPN NNP Number=Sing|fPOS=PROPN++NNP 0 _ _ _
2 brought _ VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin|fPOS=VERB++VBD 0 _ _ _
3 the _ DET DT Definite=Def|PronType=Art|fPOS=DET++DT 0 _ _ _
4 pizza _ NOUN NN Number=Sing|fPOS=NOUN++NN 0 _ _ _
5 to _ ADP IN fPOS=ADP++IN 0 _ _ _
6 Alice _ PROPN NNP Number=Sing|fPOS=PROPN++NNP 0 _ _ _
7 . _ PUNCT . fPOS=PUNCT++. 0 _ _ _
# parsing
1 Bob _ PROPN NNP Number=Sing|fPOS=PROPN++NNP 2 nsubj _ _
2 brought _ VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin|fPOS=VERB++VBD 0 ROOT _ _
3 the _ DET DT Definite=Def|PronType=Art|fPOS=DET++DT 4 det _ _
4 pizza _ NOUN NN Number=Sing|fPOS=NOUN++NN 2 dobj _ _
5 to _ ADP IN fPOS=ADP++IN 6 case _ _
6 Alice _ PROPN NNP Number=Sing|fPOS=PROPN++NNP 2 nmod _ _
7 . _ PUNCT . fPOS=PUNCT++. 2 punct _ _
# conll2tree
Input: Bob brought the pizza to Alice .
Parse:
brought VERB++VBD ROOT
+-- Bob PROPN++NNP nsubj
+-- pizza NOUN++NN dobj
| +-- the DET++DT det
+-- Alice PROPN++NNP nmod
| +-- to ADP++IN case
+-- . PUNCT++. punct
- downloaded model vs trained model
1. downloaded model
Language No. tokens POS fPOS Morph UAS LAS
-------------------------------------------------------
English 25096 90.48% 89.71% 91.30% 84.79% 80.38%
2. trained model
INFO:tensorflow:Total processed documents: 2077
INFO:tensorflow:num correct tokens: 18634
INFO:tensorflow:total tokens: 22395
INFO:tensorflow:Seconds elapsed in evaluation: 19.85, eval metric: 83.21%
3. where does the difference(84.79% - 83.21%) come from?
as mentioned https://research.googleblog.com/2016/08/meet-parseys-cousins-syntax-for-40.html
they found good hyperparameters by using MapReduce.
for example,
the hyperparameters for POS tagger :
- POS_PARAMS=128-0.08-3600-0.9-0
- decay_steps=3600
- hidden_layer_sizes=128
- learning_rate=0.08
- momentum=0.9