Skip to content

Branched from ku2482 / rltorch to use my own implementation

License

Notifications You must be signed in to change notification settings

cindycia/Atari-SAC-Discrete

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

rltorch (This repo is no longer maintained.)

rltorch provides a simple framework for reinforcement learning in PyTorch. You can easily implement distributed RL algorithms.

Update

  • 2020.04.24 : Speed up replay memory. (commit)

Installation

Install rltorch from source.

git clone https://github.com/ku2482/rltorch.git
cd rltorch
pip install -e .

Examples

Ape-X

You can implement Ape-X[1] agent like this example here.

python examples/atari/apex.py \
[--env_id str(default MsPacmanNoFrameskip-v4)] \
[--num_actors int(default 4)] [--cuda (optional)] \
[--seed int(default 0)]

Soft Actor-Critic

You can implement Soft Actor-Critic[2, 3] agent like this example here. Note that you need a license and mujoco_py to be installed.

python examples/mujoco/sac.py \
[--env_id str(default HalfCheetah-v2)] \
[--num_actors int(default 1)] \
[--cuda (optional)] [--seed int(default 0)]

SAC-Discrete

You can implement SAC-Discrete[4] agent like this example here.

python examples/atari/sac_discrete.py \
[--env_id str(default MsPacmanNoFrameskip-v4)] \
[--num_actors int(default 4)] \
[--cuda (optional)] [--seed int(default 0)]

References

[1] Horgan, Dan, et al. "Distributed prioritized experience replay." arXiv preprint arXiv:1803.00933 (2018).

[2] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." arXiv preprint arXiv:1801.01290 (2018).

[3] Haarnoja, Tuomas, et al. "Soft actor-critic algorithms and applications." arXiv preprint arXiv:1812.05905 (2018).

[4] Christodoulou, Petros. "Soft Actor-Critic for Discrete Action Settings." arXiv preprint arXiv:1910.07207 (2019).

About

Branched from ku2482 / rltorch to use my own implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages