forked from guoday/BDC_2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
executable file
·392 lines (310 loc) · 16.3 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import tensorflow as tf
import pandas as pd
import gc
import os
import numpy as np
def create_hparams():
return tf.contrib.training.HParams(
train_iterval=[1,16],
dev_iterval=[8,23],
test_iterval=[15,30],
data_path="/mnt/datasets/fusai/",
)
hparams=create_hparams()
def pre_data(hparams,data_path=None):
app_launch_df=pd.read_csv(os.path.join(data_path,'app_launch_log.txt'),sep='\t',header=None,dtype={0:np.int32,1:np.int8}).sort_index(by=[0,1])
app_launch_df.columns=['user_id','launch_day']
user_activity_df=pd.read_csv(os.path.join(data_path,'user_activity_log.txt'),sep='\t',header=None,dtype={0:np.int32,1:np.int8,2:np.int8,3:np.int32,4:np.int32,5:np.int8}).sort_index(by=[0,1])
user_activity_df.columns=['user_id','activity_day','page','video_id','author_id','action_type']
user_register_df=pd.read_csv(os.path.join(data_path,'user_register_log.txt'),dtype={0:np.int32,1:np.int8},sep='\t',header=None).sort_index(by=[0,1])
user_register_df.columns=['user_id','register_day','register_type','device_type']
video_create_df=pd.read_csv(os.path.join(data_path,'video_create_log.txt'),sep='\t',header=None,dtype={0:np.int32,1:np.int8}).sort_index(by=[0,1])
video_create_df.columns=['user_id','create_day']
return app_launch_df,user_activity_df,user_register_df,video_create_df
def create_id(app_launch_df,user_activity_df,user_register_df,video_create_df,interval):
temp_register=user_register_df[(user_register_df['register_day']<=interval[1])]
temp_activity=user_activity_df[(user_activity_df['activity_day']>=interval[0])&(user_activity_df['activity_day']<=interval[1])]
temp_launch=app_launch_df[(app_launch_df['launch_day']>=interval[0])&(app_launch_df['launch_day']<=interval[1])]
temp_create=video_create_df[(video_create_df['create_day']>=interval[0])&(video_create_df['create_day']<=interval[1])]
df=pd.concat([temp_register[['user_id']],temp_activity[['user_id']],temp_launch[['user_id']],temp_create[['user_id']]])
df=df.drop_duplicates()
del temp_register
del temp_activity
del temp_launch
del temp_create
gc.collect()
return df
def create_label(df,app_launch_df,user_activity_df,user_register_df,video_create_df,interval,train=True):
if train:
temp_register=user_register_df[(user_register_df['register_day']>=interval[1]+1)&(user_register_df['register_day']<=interval[1]+7)]
temp_activity=user_activity_df[(user_activity_df['activity_day']>=interval[1]+1)&(user_activity_df['activity_day']<=interval[1]+7)]
temp_launch=app_launch_df[(app_launch_df['launch_day']>=interval[1]+1)&(app_launch_df['launch_day']<=interval[1]+7)]
temp_create=video_create_df[(video_create_df['create_day']>=interval[1]+1)&(video_create_df['create_day']<=interval[1]+7)]
temp=pd.concat([temp_register[['user_id']],temp_activity[['user_id']],temp_launch[['user_id']],temp_create[['user_id']]])
before_register=user_register_df[(user_register_df['register_day']>=1)&(user_register_df['register_day']<=interval[1])]
idx=set(temp['user_id'])
label=[]
for val in df['user_id'].values:
if val in idx:
label.append(1)
else:
label.append(0)
df['label']=label
del temp_register
del temp_activity
del temp_launch
del temp_create
gc.collect()
else:
df['label']=[-1]*len(df['user_id'])
return df
app_launch_df,user_activity_df,user_register_df,video_create_df=pre_data(hparams,data_path=hparams.data_path)
#构造测试集,区间是hparams.test_iterval
print("testing",hparams.test_iterval)
test_df=create_id(app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.test_iterval)
print("test creating id done!")
test_df=create_label(test_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.test_iterval,train=False)
print("test creating label done!")
#构造验证集,区间是hparams.dev_iterval,以后7天做label
print("dev",hparams.dev_iterval)
dev_df=create_id(app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.dev_iterval)
print("dev creating id done!")
dev_df=create_label(dev_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.dev_iterval,train=True)
print("dev creating label done!")
#构造训练集,区间是hparams.train_iterval,以后7天做label
print("training",hparams.train_iterval)
train_df=create_id(app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.train_iterval)
print("train creating id done!")
train_df=create_label(train_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.train_iterval,train=True)
print("train creating label done!")
print("train shape",train_df.shape)
print("dev shape",dev_df.shape)
print("test shape",test_df.shape)
###################################
#############提取单值特征##########
###################################
def create_single_features(df,app_launch_df,user_activity_df,user_register_df,video_create_df,interval):
features=[]
temp_register=user_register_df[user_register_df['register_day']<=interval[1]]
temp_activity=user_activity_df[(user_activity_df['activity_day']>=interval[0])&(user_activity_df['activity_day']<=interval[1])]
temp_launch=app_launch_df[(app_launch_df['launch_day']>=interval[0])&(app_launch_df['launch_day']<=interval[1])]
temp_create=video_create_df[(video_create_df['create_day']>=interval[0])&(video_create_df['create_day']<=interval[1])]
#注册时间与预测时间的差值
dic={}
for item in temp_register[['user_id','register_day','register_type','device_type']].values:
dic[item[0]]=(item[1],item[2],item[3])
df['register_day']=df['user_id'].apply(lambda x:dic[x][0])
df['register_day_diff']=interval[1]+1-df['register_day']
df['register_type']=df['user_id'].apply(lambda x:dic[x][1])
df['device_type']=df['user_id'].apply(lambda x:dic[x][2])
df['register_day_diff']=df['register_day_diff'].apply(lambda x: min(x,interval[1]+1-interval[0]))
del dic
gc.collect()
features.extend(['register_day_diff','register_type','device_type'])
#启动次数
groupby_size=temp_launch.groupby('user_id').size()
df['launch_cont']=df['user_id'].apply(lambda x:groupby_size[x] if x in groupby_size else 0)
features.append('launch_cont')
del groupby_size
gc.collect()
#最近启动时间差
groupby_max=temp_launch.groupby('user_id').max()['launch_day']
df['launch_day_diff']=df['user_id'].apply(lambda x:interval[1]+1-groupby_max[x] if x in groupby_max else interval[1]+1-interval[0])
features.append('launch_day_diff')
del groupby_max
gc.collect()
#video创建次数
groupby_size=temp_create.groupby('user_id').size()
df['create_cont']=df['user_id'].apply(lambda x:groupby_size[x] if x in groupby_size else 0)
features.append('create_cont')
del groupby_size
gc.collect()
#video天数
temp_df=temp_create[['user_id','create_day']].drop_duplicates()
groupby_size=temp_df.groupby('user_id').size()
df['create_day_cont']=df['user_id'].apply(lambda x:groupby_size[x] if x in groupby_size else 0)
features.append('create_day_cont')
del temp_df
del groupby_size
gc.collect()
#最近启动时间差
groupby_max=temp_create.groupby('user_id').max()['create_day']
df['create_day_diff']=df['user_id'].apply(lambda x:interval[1]+1-groupby_max[x] if x in groupby_max else interval[1]+1-interval[0])
features.append('create_day_diff')
del groupby_max
gc.collect()
#活动次数
groupby_size=temp_activity.groupby('user_id').size()
df['activity_cont']=df['user_id'].apply(lambda x:groupby_size[x] if x in groupby_size else 0)
features.append('activity_cont')
del groupby_size
gc.collect()
#最近活动时间差
groupby_max=temp_activity.groupby('user_id').max()['activity_day']
df['activity_day_diff']=df['user_id'].apply(lambda x:interval[1]+1-groupby_max[x] if x in groupby_max else interval[1]+1-interval[0])
features.append('activity_day_diff')
del groupby_max
gc.collect()
#活跃天数
temp_df=temp_activity[['user_id','activity_day']].drop_duplicates()
groupby_size=temp_df.groupby('user_id').size()
df['activity_day_cont']=df['user_id'].apply(lambda x:groupby_size[x] if x in groupby_size else 0)
features.append('activity_day_cont')
del temp_df
del groupby_size
gc.collect()
del temp_register
del temp_activity
del temp_launch
del temp_create
gc.collect()
return df,features
#测试集提取单值特征
print("testing",hparams.test_iterval)
test_df,_=create_single_features(test_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.test_iterval)
print("test creating single features done!")
#验证集提取单值特征
print("dev",hparams.dev_iterval)
dev_df,_=create_single_features(dev_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.dev_iterval)
print("dev creating single features done!")
#训练集提取单值特征
print("training",hparams.train_iterval)
train_df,single_features=create_single_features(train_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.train_iterval)
print("train creating single features done!")
print("train shape",train_df.shape)
print("dev shape",dev_df.shape)
print("test shape",test_df.shape)
print("single features v1",single_features)
###################################
#############提取序列特征##########
###################################
from collections import Counter
def create_seq_features(df,app_launch_df,user_activity_df,user_register_df,video_create_df,interval):
features=[]
temp_register=user_register_df[(user_register_df['register_day']>=interval[0])&(user_register_df['register_day']<=interval[1])]
temp_activity=user_activity_df[(user_activity_df['activity_day']>=interval[0])&(user_activity_df['activity_day']<=interval[1])]
temp_launch=app_launch_df[(app_launch_df['launch_day']>=interval[0])&(app_launch_df['launch_day']<=interval[1])]
temp_create=video_create_df[(video_create_df['create_day']>=interval[0])&(video_create_df['create_day']<=interval[1])]
activity_groupby=temp_activity[['user_id','activity_day']].groupby('user_id')
activity_groupby=activity_groupby.apply(lambda x: list(x['activity_day']))
create_groupby=temp_create[['user_id','create_day']].groupby('user_id')
create_groupby=create_groupby.apply(lambda x: list(x['create_day']))
launch_groupby=temp_launch[['user_id','launch_day']].groupby('user_id')
launch_groupby=launch_groupby.apply(lambda x: list(x['launch_day']))
def f(x):
days=set()
if x in launch_groupby:
days=days|set(launch_groupby[x])
if x in create_groupby:
days=days|set(create_groupby[x])
if x in activity_groupby:
days=days|set(activity_groupby[x])
temp=[]
for i in range(interval[1]-6,interval[1]+1):
if i in days:
temp.append(str(interval[1]+1-i)+'_'+'1')
else:
temp.append(str(interval[1]+1-i)+'_'+'0')
return ' '.join(temp)
df['active_seq']=df['user_id'].apply(f)
features.append('active_seq')
def f(x):
days=[]
if x in create_groupby:
days=create_groupby[x]
days=dict(Counter(days))
temp=[]
for i in range(interval[1]-6,interval[1]+1):
if i in days:
temp.append(str(interval[1]+1-i)+'_'+str(int(np.log(days[i]+1)/np.log(2))))
else:
temp.append(str(interval[1]+1-i)+'_'+'0')
return ' '.join(temp)
df['create_seq']=df['user_id'].apply(f)
features.append('create_seq')
def f(x):
days=[]
if x in activity_groupby:
days=activity_groupby[x]
days=dict(Counter(days))
temp=[]
for i in range(interval[1]-6,interval[1]+1):
if i in days:
temp.append(str(interval[1]+1-i)+'_'+str(days[i]))
else:
temp.append(str(interval[1]+1-i)+'_'+'0')
return ' '.join(temp)
df['activity_seq']=df['user_id'].apply(f)
features.append('activity_seq')
del temp_register
del temp_activity
del temp_launch
del temp_create
gc.collect()
return df,features
#测试集提取序列特征
print("testing",hparams.test_iterval)
test_df,_=create_seq_features(test_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.test_iterval)
print("test creating seq features done!")
#验证集提取序列特征
print("dev",hparams.dev_iterval)
dev_df,_=create_seq_features(dev_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.dev_iterval)
print("dev creating seq features done!")
#训练集提取序列特征
print("training",hparams.train_iterval)
train_df,seq_features=create_seq_features(train_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.train_iterval)
print("train creating seq features done!")
print("train shape",train_df.shape)
print("dev shape",dev_df.shape)
print("test shape",test_df.shape)
print("seq features v1",seq_features)
###################################
###########提取浮点数特征##########
###################################
def create_num_features(df,app_launch_df,user_activity_df,user_register_df,video_create_df,interval):
features=[]
temp_register=user_register_df[(user_register_df['register_day']>=interval[0])&(user_register_df['register_day']<=interval[1])]
temp_activity=user_activity_df[(user_activity_df['activity_day']>=interval[0])&(user_activity_df['activity_day']<=interval[1])]
temp_launch=app_launch_df[(app_launch_df['launch_day']>=interval[0])&(app_launch_df['launch_day']<=interval[1])]
temp_create=video_create_df[(video_create_df['create_day']>=interval[0])&(video_create_df['create_day']<=interval[1])]
activity_groupby=temp_activity[['user_id','activity_day']].drop_duplicates().groupby('user_id')
activity_groupby=activity_groupby.apply(lambda x: set(x['activity_day']))
create_groupby=temp_create[['user_id','create_day']].drop_duplicates().groupby('user_id')
create_groupby=create_groupby.apply(lambda x: set(x['create_day']))
launch_groupby=temp_launch[['user_id','launch_day']].drop_duplicates().groupby('user_id')
launch_groupby=launch_groupby.apply(lambda x: set(x['launch_day']))
df['active_day_fft_min']=df['active_days'].apply(lambda x:abs(np.min(x)))
features.append('active_day_fft_min')
df['active_day_fft_max']=df['active_days'].apply(lambda x:abs(np.max(x)))
features.append('active_day_fft_max')
df['active_day_fft_mean']=df['active_days'].apply(lambda x:abs(np.mean(x)))
features.append('active_day_fft_mean')
df['active_day_fft_var']=df['active_days'].apply(lambda x:abs(np.var(x)))
features.append('active_day_fft_var')
df['active_day_fft_median']=df['active_days'].apply(lambda x:abs(np.median(x)))
features.append('active_day_fft_median')
del temp_register
del temp_activity
del temp_launch
del temp_create
gc.collect()
return df,features
#测试集提取浮点数特征
print("testing",hparams.test_iterval)
test_df,_=create_num_features(test_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.test_iterval)
print("test creating num features done!")
#验证集提取浮点数特征
print("dev",hparams.dev_iterval)
dev_df,_=create_num_features(dev_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.dev_iterval)
print("dev creating num features done!")
#训练集提取浮点数特征
print("training",hparams.train_iterval)
train_df,num_features=create_num_features(train_df,app_launch_df,user_activity_df,user_register_df,video_create_df,hparams.train_iterval)
print("train creating num features done!")
print("train shape",train_df.shape)
print("dev shape",dev_df.shape)
print("test shape",test_df.shape)
print("num features v1",num_features)
train_df.to_csv('/home/kesci/train.csv',index=False)
dev_df.to_csv('/home/kesci/dev.csv',index=False)
test_df.to_csv('/home/kesci/test.csv',index=False)