This project contains various python scripts used for disparity map analysis
Note: Data preprocessing stage to generate input files for AI analysis via ir-tp-net
Example:
python3 ./Preprocessing_2DPhaseCorrelation.py --crop_border --input $i --targetdisp $TargetDispImage \
--groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --corr $CorrImage --verbose
Notes:
- Input file is a special multi-layer TIFF file
- Output CorrImage is a 3D TIFF file with 120 layers
- Other output files are 2D images
Example:
python3 ./Preprocessing_CombinedImages.py --corr $CorrImage --targetdisp $TargetDispImage \
--groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --output $CombinedImage
Notes:
- Output file is a 3D image with 124 layers
- scaled to the size of the correlation image
Please see "ir-tp-net" project for neural network training and testing to generate predicted disparity map
Note: Data postprocessing stage to analyze outputs from AI analysis
Examples:
python3 ./Compute_Density.py --pred $i --groundtruth $GroundTruthImage --adjtilesdim 1 --output $Density_CSVFile --inclusionmask $InclusionMask_File --exclusionmask $ExclusionMask_File --threshold 2.0 --verbose
Note: input file is the predicted disparity map
Example:
python3 ./Compute_RMSE_WithThreshold.py --pred $i --groundtruth $GroundTruthImage --adjtilesdim $AdjTilesDim --threshold $RMSE_Threshold --output $RMSE_CSVFile
python3 ./Compute_RMSE_WithFiltering.py --pred $i --groundtruth $GroundTruthImage --confidence $ConfidenceImage --disp_lma $DispLMAImage --adjtilesdim 1 --threshold $Threshold --output $RMSE_CSVFile --output_mask $RMSEFiltering_MaskFile
Note: input file is the predicted disparity map
Quality control stage generating multi-layer 3D tiff file
python3 ./Compute_Inference_QCImage.py --pred $i --groundtruth $GroundTruthImage --targetdisp $TargetDispImage --mask $DataFilteringMask --threshold 2.0 --output $InferenceQC_File --verbose
Notes:
- input file is the predicted disparity map
- output file includes predicted disparity map, ground truth map, target disparity map and mask map