Skip to content

Commit 1588459

Browse files
authored
fix(deps): Update dependency numpy to v2.2.2 (#275)
This PR contains the following updates: | Package | Update | Change | |---|---|---| | [numpy](https://togithub.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | patch | `==2.2.1` -> `==2.2.2` | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.2.2`](https://togithub.com/numpy/numpy/releases/tag/v2.2.2): 2.2.2 (Jan 18, 2025) [Compare Source](https://togithub.com/numpy/numpy/compare/v2.2.1...v2.2.2) ### NumPy 2.2.2 Release Notes NumPy 2.2.2 is a patch release that fixes bugs found after the 2.2.1 release. The number of typing fixes/updates is notable. This release supports Python versions 3.10-3.13. #### Contributors A total of 8 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Alicia Boya García + - Charles Harris - Joren Hammudoglu - Kai Germaschewski + - Nathan Goldbaum - PTUsumit + - Rohit Goswami - Sebastian Berg #### Pull requests merged A total of 16 pull requests were merged for this release. - [#&#8203;28050](https://togithub.com/numpy/numpy/pull/28050): MAINT: Prepare 2.2.x for further development - [#&#8203;28055](https://togithub.com/numpy/numpy/pull/28055): TYP: fix `void` arrays not accepting `str` keys in `__setitem__` - [#&#8203;28066](https://togithub.com/numpy/numpy/pull/28066): TYP: fix unnecessarily broad `integer` binop return types ([#&#8203;28065](https://togithub.com/numpy/numpy/issues/28065)) - [#&#8203;28112](https://togithub.com/numpy/numpy/pull/28112): TYP: Better `ndarray` binop return types for `float64` &... - [#&#8203;28113](https://togithub.com/numpy/numpy/pull/28113): TYP: Return the correct `bool` from `issubdtype` - [#&#8203;28114](https://togithub.com/numpy/numpy/pull/28114): TYP: Always accept `date[time]` in the `datetime64` constructor - [#&#8203;28120](https://togithub.com/numpy/numpy/pull/28120): BUG: Fix auxdata initialization in ufunc slow path - [#&#8203;28131](https://togithub.com/numpy/numpy/pull/28131): BUG: move reduction initialization to ufunc initialization - [#&#8203;28132](https://togithub.com/numpy/numpy/pull/28132): TYP: Fix `interp` to accept and return scalars - [#&#8203;28137](https://togithub.com/numpy/numpy/pull/28137): BUG: call PyType_Ready in f2py to avoid data races - [#&#8203;28145](https://togithub.com/numpy/numpy/pull/28145): BUG: remove unnecessary call to PyArray_UpdateFlags - [#&#8203;28160](https://togithub.com/numpy/numpy/pull/28160): BUG: Avoid data race in PyArray_CheckFromAny_int - [#&#8203;28175](https://togithub.com/numpy/numpy/pull/28175): BUG: Fix f2py directives and --lower casing - [#&#8203;28176](https://togithub.com/numpy/numpy/pull/28176): TYP: Fix overlapping overloads issue in 2->1 ufuncs - [#&#8203;28177](https://togithub.com/numpy/numpy/pull/28177): TYP: preserve shape-type in ndarray.astype() - [#&#8203;28178](https://togithub.com/numpy/numpy/pull/28178): TYP: Fix missing and spurious top-level exports #### Checksums ##### MD5 749cb2adf8043551aae22bbf0ed3130a numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl bc79fa2e44316b7ce9bacb48a993ed91 numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl c6b2caa2bbb645b5950dccb77efb1dbb numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl 8c410efac169af880cacbbac8a731658 numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl 21d165669635a9b680d03b0b4e7f5b98 numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a34ef5e7c967136fdc59c822e99f87d6 numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a81749effc5160ff8dde7eb2ebe868c4 numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl 546612d82fae082697879aaf2b985b1b numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl d874e626f58175ad603cb68fda2a4e28 numpy-2.2.2-cp310-cp310-win32.whl 20564a5caeb621061267f9d80c1e7ed0 numpy-2.2.2-cp310-cp310-win_amd64.whl ef5336ddae73feef891844a205f89b15 numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl 7a0c8804cb6ebca82b1cf3063b410687 numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl 1682639d0420a532f8894c4a8685b23d numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl d33d53efc5744b577cb8a6ac9971cfdb numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl c85b92e2ed7ef0eaeb15909ad73aea22 numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl efa1a587f607a37336c477bed977ea64 numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e0effe9902e262704a115c6f7095daf7 numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl 425e0cebeb1c2c91bba42ae195836268 numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl 57121319a2fbb76eed4b268282ed668e numpy-2.2.2-cp311-cp311-win32.whl fdb54e7345ff657d208fbb52469a5861 numpy-2.2.2-cp311-cp311-win_amd64.whl bdf299e0abc45b5c5113a1cc5505636a numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl 30c25784c07965592cf88104b6c02508 numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl 65e630a0de5403c41a0083198bc14442 numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl 6d9f50717e7b40f1ebdf139f83cc7504 numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl 6b092a9280ada70482d44f538752fc0b numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9c273da8438391eab30f6c1c4898be5d numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d619047dcaf041b806a7b59ff0a798d5 numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl fa5d0d979104456d7c43a183223c8587 numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl 3b8689aedff5037cad85b018e2d5e43a numpy-2.2.2-cp312-cp312-win32.whl a2340ff05cae7e09f63bfcfd4e75ea87 numpy-2.2.2-cp312-cp312-win_amd64.whl 044e86bd65492af34a59e4109fbeed16 numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl 7ca0f0e8c8d3d80ec473ec33929c2ae3 numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl 4b866ad895e007005afe8a29837cf7d6 numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl 2e6247faabf6d0ac0fafaca0bb405ff8 numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl 773982551185ae327cdefe416e73acfc numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1c0ecc958a555a8a95c92c1dd7dc2358 numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9f662eb58b8f711585550d6fdf8afa4f numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl 53471186fc990eb22e82a0512b310438 numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl 6b4d65349c74dd91853a7cc6b5c5786e numpy-2.2.2-cp313-cp313-win32.whl 33dc5bab2d3f752ef00f81021d68cb5a numpy-2.2.2-cp313-cp313-win_amd64.whl 0acc5069c5ab4fe3ea7c35956636c462 numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl 01e3f727594a12eee6d0677113525b96 numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl 7b1ddabcb187b18caa52055bb2b2dc67 numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl a09f5c138ad8c87b9692eea99f344a98 numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl 289ec3155aa21c5a161b2d61d2cf3c2d numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6bb3eb03d400ad708942afbfebd07abc numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 62f8ef2a5c9e76b0e43851a7bb9c0379 numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl 59b4b77118f958dd07484686e82b1e7a numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl 726b58ec542581c5e46adfd4c5c0fed0 numpy-2.2.2-cp313-cp313t-win32.whl f2b4eab55a963e8cd4c6c1e573c9a59f numpy-2.2.2-cp313-cp313t-win_amd64.whl f6a93eaebee6f9890a4922571141ecb5 numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl fb457bbe2d231e836d2230b06d4706ca numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl df4c07a48a24621167c12704ba5ac0de numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0d1108b9060469eb28bb4a4cffa7b98f numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl ac108586d3aeab9e2d0134b744763eb9 numpy-2.2.2.tar.gz ##### SHA256 7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl 2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl 40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715 numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl 995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97 numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957 numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl 09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl 159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160 numpy-2.2.2-cp310-cp310-win32.whl 64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014 numpy-2.2.2-cp310-cp310-win_amd64.whl 642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189 numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl 6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323 numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl 451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826 numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8 numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl 860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50 numpy-2.2.2-cp311-cp311-win32.whl da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2 numpy-2.2.2-cp311-cp311-win_amd64.whl ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467 numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl 23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl 3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825 numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl 8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37 numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl 2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748 numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0 numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278 numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl 9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl 4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283 numpy-2.2.2-cp312-cp312-win32.whl 5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb numpy-2.2.2-cp312-cp312-win_amd64.whl b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369 numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl 22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl 128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl 250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84 numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0 numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl 57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl 4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9 numpy-2.2.2-cp313-cp313-win32.whl 5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369 numpy-2.2.2-cp313-cp313-win_amd64.whl b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391 numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl 9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39 numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl 41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317 numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl 7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49 numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl 0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2 numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7 numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl 106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648 numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl 0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4 numpy-2.2.2-cp313-cp313t-win32.whl 97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576 numpy-2.2.2-cp313-cp313t-win_amd64.whl b0531f0b0e07643eb089df4c509d30d72c9ef40defa53e41363eca8a8cc61495 numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e9e82dcb3f2ebbc8cb5ce1102d5f1c5ed236bf8a11730fb45ba82e2841ec21df numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl e0d4142eb40ca6f94539e4db929410f2a46052a0fe7a2c1c59f6179c39938d2a numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 356ca982c188acbfa6af0d694284d8cf20e95b1c3d0aefa8929376fea9146f60 numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f numpy-2.2.2.tar.gz </details> --- ### Configuration 📅 **Schedule**: Branch creation - "before 4am on the first day of the month" (UTC), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied. ♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://togithub.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzNy40NDAuNyIsInVwZGF0ZWRJblZlciI6IjM3LjQ0MC43IiwidGFyZ2V0QnJhbmNoIjoibWFpbiIsImxhYmVscyI6WyJhdXRvbWVyZ2UiXX0=-->
1 parent 7aea420 commit 1588459

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@
1818
"iniconfig==2.0.0",
1919
"Jinja2==3.1.5",
2020
"MarkupSafe==3.0.2",
21-
"numpy==2.2.1",
21+
"numpy==2.2.2",
2222
"packaging==24.2",
2323
"pandas==2.2.3",
2424
"pluggy==1.5.0",

0 commit comments

Comments
 (0)