Skip to content

Commit 45a9f5b

Browse files
authored
fix(deps): Update dependency numpy to v2.2.4 (#291)
This PR contains the following updates: | Package | Update | Change | |---|---|---| | [numpy](https://redirect.github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | patch | `==2.2.3` -> `==2.2.4` | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.2.4`](https://redirect.github.com/numpy/numpy/releases/tag/v2.2.4): 2.2.4 (Mar 16, 2025) [Compare Source](https://redirect.github.com/numpy/numpy/compare/v2.2.3...v2.2.4) ### NumPy 2.2.4 Release Notes NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3 release. There are a large number of typing improvements, the rest of the changes are the usual mix of bugfixes and platform maintenace. This release supports Python versions 3.10-3.13. #### Contributors A total of 15 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Abhishek Kumar - Andrej Zhilenkov - Andrew Nelson - Charles Harris - Giovanni Del Monte - Guan Ming(Wesley) Chiu + - Jonathan Albrecht + - Joren Hammudoglu - Mark Harfouche - Matthieu Darbois - Nathan Goldbaum - Pieter Eendebak - Sebastian Berg - Tyler Reddy - lvllvl + #### Pull requests merged A total of 17 pull requests were merged for this release. - [#&#8203;28333](https://redirect.github.com/numpy/numpy/pull/28333): MAINT: Prepare 2.2.x for further development. - [#&#8203;28348](https://redirect.github.com/numpy/numpy/pull/28348): TYP: fix positional- and keyword-only params in astype, cross... - [#&#8203;28377](https://redirect.github.com/numpy/numpy/pull/28377): MAINT: Update FreeBSD version and fix test failure - [#&#8203;28379](https://redirect.github.com/numpy/numpy/pull/28379): BUG: numpy.loadtxt reads only 50000 lines when skip_rows >= max_rows - [#&#8203;28385](https://redirect.github.com/numpy/numpy/pull/28385): BUG: Make np.nonzero threading safe - [#&#8203;28420](https://redirect.github.com/numpy/numpy/pull/28420): BUG: safer bincount casting (backport to 2.2.x) - [#&#8203;28422](https://redirect.github.com/numpy/numpy/pull/28422): BUG: Fix building on s390x with clang - [#&#8203;28423](https://redirect.github.com/numpy/numpy/pull/28423): CI: use QEMU 9.2.2 for Linux Qemu tests - [#&#8203;28424](https://redirect.github.com/numpy/numpy/pull/28424): BUG: skip legacy dtype multithreaded test on 32 bit runners - [#&#8203;28435](https://redirect.github.com/numpy/numpy/pull/28435): BUG: Fix searchsorted and CheckFromAny byte-swapping logic - [#&#8203;28449](https://redirect.github.com/numpy/numpy/pull/28449): BUG: sanity check `__array_interface__` number of dimensions - [#&#8203;28510](https://redirect.github.com/numpy/numpy/pull/28510): MAINT: Hide decorator from pytest traceback - [#&#8203;28512](https://redirect.github.com/numpy/numpy/pull/28512): TYP: Typing fixes backported from [#&#8203;28452](https://redirect.github.com/numpy/numpy/issues/28452), [#&#8203;28491](https://redirect.github.com/numpy/numpy/issues/28491), [#&#8203;28494](https://redirect.github.com/numpy/numpy/issues/28494) - [#&#8203;28521](https://redirect.github.com/numpy/numpy/pull/28521): TYP: Backport fixes from [#&#8203;28505](https://redirect.github.com/numpy/numpy/issues/28505), [#&#8203;28506](https://redirect.github.com/numpy/numpy/issues/28506), [#&#8203;28508](https://redirect.github.com/numpy/numpy/issues/28508), and [#&#8203;28511](https://redirect.github.com/numpy/numpy/issues/28511) - [#&#8203;28533](https://redirect.github.com/numpy/numpy/pull/28533): TYP: Backport typing fixes from main (2) - [#&#8203;28534](https://redirect.github.com/numpy/numpy/pull/28534): TYP: Backport typing fixes from main (3) - [#&#8203;28542](https://redirect.github.com/numpy/numpy/pull/28542): TYP: Backport typing fixes from main (4) #### Checksums ##### MD5 935928cbd2de140da097f6d5f4a01d72 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl bf7fd01bb177885e920173b610c195d9 numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl 826e52cd898567a0c446113ab7a7b362 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 9982a91d7327aea541c24aff94d3e462 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 5bdf5b63f4ee01fa808d13043b2a2275 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 677b3031105e24eaee2e0e57d7c2a306 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d857867787fe1eb236670e7fdb25f414 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl a5aff3a7eb2923878e67fbe1cd04a9e9 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl e00bd3ac85d8f34b46b7f97a8278aeb3 numpy-2.2.4-cp310-cp310-win32.whl e5cb2a5d14bccee316bb73173be125ec numpy-2.2.4-cp310-cp310-win_amd64.whl 494f60d8e1c3500413bd093bb3f486ea numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl a886a9f3e80a60ce6ba95b431578bbca numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl 889f3b507bab9272d9b549780840a642 numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl 059788668d2c4e9aace4858e77c099ed numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl db9ae978afb76a4bf79df0657a66aaeb numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e36963a4c177157dc7b0775c309fa5a8 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3603e683878b74f38e5617f04ff6a369 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl afbc410fb9b42b19f4f7c81c21d6777f numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl 33ff8081378188894097942f80c33e26 numpy-2.2.4-cp311-cp311-win32.whl 5b11fe8d26318d85e0bc577a654f6643 numpy-2.2.4-cp311-cp311-win_amd64.whl 91121787f396d3e98210de8b617e5d48 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl c524d1020b4652aacf4477d1628fa1ba numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl eb08f551bdd6772155bb39ac0da47479 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl 7cb37fc9145d0ebbea5666b4f9ed1027 numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c4452a5dc557c291904b5c51a4148237 numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bd23a12ead870759f264160ab38b2c9d numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 07b44109381985b48d1eef80feebc5ad numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 95f1a27d33106fa9f40ee0714681c840 numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 507e550a55b19dedf267b58a487ba0bc numpy-2.2.4-cp312-cp312-win32.whl be21ccbf8931e92ba1fdb2dc1250bf2a numpy-2.2.4-cp312-cp312-win_amd64.whl e94003c2b65d81b00203711c5c42fb8e numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl cf781fd5412ffd826e0436883452cc17 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 92c9a30386a64f2deddad1db742bd296 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 7fd16554fa0a15b7f99b1fabf1c4592c numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 9293b0575a902b2d55c35567dee7679e numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9970699bd95e8a64a562b1e6328b83d0 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e8597c611a919a8e88229d6889c1f86e numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 329288501f012606605bdbed368e58e9 numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl 04bf8d0f6a9e279ab01df4ed0b4aeee1 numpy-2.2.4-cp313-cp313-win32.whl 66801fe84a436b7ed3be6e0082b86917 numpy-2.2.4-cp313-cp313-win_amd64.whl 3e2f31e01b45cd16a87b794477de3714 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl 7504018213a3a8fea7173e2c1d0fcfd1 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl e299021397c3cdb941b7ffe77cf0fefe numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 1cc2731a246079bcab361179f38e7ccb numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl e6eccf936d25c9eda9df1a4d50ae2fdc numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ba825efd05cca6d56c3dca9f7f1f88e7 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 369eebec47c9c27cb4841a13e9522167 numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl 554dbfa52988d01f715cbe8d4da4b409 numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 811d25a008c68086c9382487e9a4127a numpy-2.2.4-cp313-cp313t-win32.whl 893fd2fdd42f386e300bee885bbb7778 numpy-2.2.4-cp313-cp313t-win_amd64.whl 65e284546c5ee575eca0a3726c0a1d98 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e4e73511eac8f1a10c6abbd6fa2fa0aa numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl a884ed5263b91fa87b5e3d14caf955a5 numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7330087a6ad1527ae20a495e2fb3b357 numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 56232f4a69b03dd7a87a55fffc5f2ebc numpy-2.2.4.tar.gz ##### SHA256 8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a numpy-2.2.4-cp310-cp310-win32.whl 0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542 numpy-2.2.4-cp310-cp310-win_amd64.whl e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4 numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl 9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4 numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880 numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl 2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1 numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6 numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09 numpy-2.2.4-cp311-cp311-win32.whl f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91 numpy-2.2.4-cp311-cp311-win_amd64.whl a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854 numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592 numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00 numpy-2.2.4-cp312-cp312-win32.whl 2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146 numpy-2.2.4-cp312-cp312-win_amd64.whl 1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7 numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl 1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298 numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6 numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c numpy-2.2.4-cp313-cp313-win32.whl 207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3 numpy-2.2.4-cp313-cp313-win_amd64.whl 8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0 numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960 numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286 numpy-2.2.4-cp313-cp313t-win32.whl 188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d numpy-2.2.4-cp313-cp313t-win_amd64.whl 7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f numpy-2.2.4.tar.gz </details> --- ### Configuration 📅 **Schedule**: Branch creation - "* 0-3 1 * *" (UTC), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied. ♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://redirect.github.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzOS4yMjcuMyIsInVwZGF0ZWRJblZlciI6IjM5LjIyNy4zIiwidGFyZ2V0QnJhbmNoIjoibWFpbiIsImxhYmVscyI6WyJhdXRvbWVyZ2UiXX0=-->
1 parent 9047172 commit 45a9f5b

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@
1818
"iniconfig==2.0.0",
1919
"Jinja2==3.1.6",
2020
"MarkupSafe==3.0.2",
21-
"numpy==2.2.3",
21+
"numpy==2.2.4",
2222
"packaging==24.2",
2323
"pandas==2.2.3",
2424
"pluggy==1.5.0",

0 commit comments

Comments
 (0)