-
Notifications
You must be signed in to change notification settings - Fork 11
/
TOMS642.F90
608 lines (505 loc) · 18.7 KB
/
TOMS642.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
MODULE Cubic_Spline_GCV
! ALGORITHM 642 COLLECTED ALGORITHMS FROM ACM.
! Code converted using TO_F90 by Alan Miller
! Date: 2002-06-04 Time: 15:44:36
! ALGORITHM APPEARED IN ACM-TRANS. MATH. SOFTWARE, VOL.12, NO. 2,
! JUN., 1986, P. 150.
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
CONTAINS
! SUBROUTINE NAME - CUBGCV
!--------------------------------------------------------------------------
! COMPUTER - VAX/DOUBLE
! AUTHOR - M.F.HUTCHINSON
! CSIRO DIVISION OF MATHEMATICS AND STATISTICS
! P.O. BOX 1965
! CANBERRA, ACT 2601
! AUSTRALIA
! LATEST REVISION - 15 AUGUST 1985
! PURPOSE - CUBIC SPLINE DATA SMOOTHER
! USAGE - CALL CUBGCV (X, F, DF, N, Y, C, IC, VAR, JOB, SE, WK, IER)
! ARGUMENTS X - VECTOR OF LENGTH N CONTAINING THE ABSCISSAE OF THE N
! DATA POINTS (X(I),F(I)) I=1..N. (INPUT) X
! MUST BE ORDERED SO THAT X(I) < X(I+1).
! F - VECTOR OF LENGTH N CONTAINING THE ORDINATES
! (OR FUNCTION VALUES) OF THE N DATA POINTS (INPUT).
! DF - VECTOR OF LENGTH N. (INPUT/OUTPUT)
! DF(I) IS THE RELATIVE STANDARD DEVIATION OF THE
! ERROR ASSOCIATED WITH DATA POINT I.
! EACH DF(I) MUST BE POSITIVE. THE VALUES IN DF ARE
! SCALED BY THE SUBROUTINE SO THAT THEIR MEAN SQUARE
! VALUE IS 1, AND UNSCALED AGAIN ON NORMAL EXIT.
! THE MEAN SQUARE VALUE OF THE DF(I) IS RETURNED
! IN WK(7) ON NORMAL EXIT.
! IF THE ABSOLUTE STANDARD DEVIATIONS ARE KNOWN,
! THESE SHOULD BE PROVIDED IN DF AND THE ERROR VARIANCE
! PARAMETER VAR (SEE BELOW) SHOULD THEN BE SET TO 1.
! IF THE RELATIVE STANDARD DEVIATIONS ARE UNKNOWN,
! SET EACH DF(I)=1.
! N - NUMBER OF DATA POINTS (INPUT).
! N MUST BE >= 3.
! Y,C - SPLINE COEFFICIENTS. (OUTPUT) Y IS A VECTOR OF LENGTH N.
! C IS AN N-1 BY 3 MATRIX. THE VALUE OF THE SPLINE
! APPROXIMATION AT T IS
! S(T) = ((C(I,3)*D + C(I,2))*D + C(I,1))*D + Y(I)
! WHERE X(I) <= T < X(I+1) AND D = T - X(I).
! IC - ROW DIMENSION OF MATRIX C EXACTLY AS SPECIFIED IN THE
! DIMENSION STATEMENT IN THE CALLING PROGRAM. (INPUT)
! VAR - ERROR VARIANCE. (INPUT/OUTPUT)
! IF VAR IS NEGATIVE (I.E. UNKNOWN) THEN THE SMOOTHING
! PARAMETER IS DETERMINED BY MINIMIZING THE GENERALIZED
! CROSS VALIDATION AND AN ESTIMATE OF THE ERROR
! VARIANCE IS RETURNED IN VAR.
! IF VAR IS NON-NEGATIVE (I.E. KNOWN) THEN THE
! SMOOTHING PARAMETER IS DETERMINED TO MINIMIZE AN
! ESTIMATE, WHICH DEPENDS ON VAR, OF THE TRUE MEAN
! SQUARE ERROR, AND VAR IS UNCHANGED.
! IN PARTICULAR, IF VAR IS ZERO, THEN AN INTERPOLATING
! NATURAL CUBIC SPLINE IS CALCULATED.
! VAR SHOULD BE SET TO 1 IF ABSOLUTE STANDARD
! DEVIATIONS HAVE BEEN PROVIDED IN DF (SEE ABOVE).
! JOB - JOB SELECTION PARAMETER. (INPUT)
! JOB = 0 SHOULD BE SELECTED IF POINT STANDARD ERROR
! ESTIMATES ARE NOT REQUIRED IN SE.
! JOB = 1 SHOULD BE SELECTED IF POINT STANDARD ERROR
! ESTIMATES ARE REQUIRED IN SE.
! SE - VECTOR OF LENGTH N CONTAINING BAYESIAN STANDARD
! ERROR ESTIMATES OF THE FITTED SPLINE VALUES IN Y.
! SE IS NOT REFERENCED IF JOB=0. (OUTPUT)
! WK - WORK VECTOR OF LENGTH 7*(N + 2). ON NORMAL EXIT THE
! FIRST 7 VALUES OF WK ARE ASSIGNED AS FOLLOWS:-
! WK(1) = SMOOTHING PARAMETER (= RHO/(RHO + 1))
! WK(2) = ESTIMATE OF THE NUMBER OF DEGREES OF
! FREEDOM OF THE RESIDUAL SUM OF SQUARES
! WK(3) = GENERALIZED CROSS VALIDATION
! WK(4) = MEAN SQUARE RESIDUAL
! WK(5) = ESTIMATE OF THE TRUE MEAN SQUARE ERROR
! AT THE DATA POINTS
! WK(6) = ESTIMATE OF THE ERROR VARIANCE
! WK(7) = MEAN SQUARE VALUE OF THE DF(I)
! IF WK(1)=0 (RHO=0) AN INTERPOLATING NATURAL CUBIC
! SPLINE HAS BEEN CALCULATED.
! IF WK(1)=1 (RHO=INFINITE) A LEAST SQUARES REGRESSION
! LINE HAS BEEN CALCULATED.
! WK(2) IS AN ESTIMATE OF THE NUMBER OF DEGREES OF
! FREEDOM OF THE RESIDUAL WHICH REDUCES TO THE
! USUAL VALUE OF N-2 WHEN A LEAST SQUARES REGRESSION
! LINE IS CALCULATED.
! WK(3),WK(4),WK(5) ARE CALCULATED WITH THE DF(I)
! SCALED TO HAVE MEAN SQUARE VALUE 1. THE UNSCALED
! VALUES OF WK(3),WK(4),WK(5) MAY BE CALCULATED BY
! DIVIDING BY WK(7).
! WK(6) COINCIDES WITH THE OUTPUT VALUE OF VAR IF
! VAR IS NEGATIVE ON INPUT. IT IS CALCULATED WITH
! THE UNSCALED VALUES OF THE DF(I) TO FACILITATE
! COMPARISONS WITH A PRIORI VARIANCE ESTIMATES.
! IER - ERROR PARAMETER. (OUTPUT)
! TERMINAL ERROR
! IER = 129, IC IS LESS THAN N-1.
! IER = 130, N IS LESS THAN 3.
! IER = 131, INPUT ABSCISSAE ARE NOT
! ORDERED SO THAT X(I) < X(I+1).
! IER = 132, DF(I) IS NOT POSITIVE FOR SOME I.
! IER = 133, JOB IS NOT 0 OR 1.
! PRECISION/HARDWARE - DOUBLE
! REQUIRED ROUTINES - SPINT1, SPFIT1, SPCOF1, SPERR1
! REMARKS THE NUMBER OF ARITHMETIC OPERATIONS REQUIRED BY THE SUBROUTINE
! IS PROPORTIONAL TO N. THE SUBROUTINE USES AN ALGORITHM
! DEVELOPED BY M.F. HUTCHINSON AND F.R. DE HOOG,
! 'SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS',
! NUMER. MATH. (IN PRESS)
!-----------------------------------------------------------------------
SUBROUTINE cubgcv(x, f, df, n, y, c, ic, var, job, se, wk, ier)
!---SPECIFICATIONS FOR ARGUMENTS---
REAL (dp), INTENT(IN OUT) :: x(:)
REAL (dp), INTENT(IN OUT) :: f(:)
REAL (dp), INTENT(OUT) :: df(:)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: y(:)
INTEGER, INTENT(IN) :: ic
REAL (dp), INTENT(IN OUT) :: c(ic,3)
REAL (dp), INTENT(IN OUT) :: var
INTEGER, INTENT(IN) :: job
REAL (dp), INTENT(IN OUT) :: se(:)
REAL (dp), INTENT(OUT) :: wk(0:n+1,7)
INTEGER, INTENT(OUT) :: ier
!---SPECIFICATIONS FOR LOCAL VARIABLES---
REAL (dp) :: delta, ERR, gf1, gf2, gf3, gf4, r1, r2, r3, r4, &
avh, avdf, avar, stat(6), p, q
REAL (dp), PARAMETER :: ratio = 2.0_dp, tau = 1.618033989_dp, &
zero = 0.0_dp, one = 1.0_dp
INTEGER :: i
!---INITIALIZE---
ier = 133
IF (job >= 0 .AND. job <= 1) THEN
CALL spint1(x, avh, f, df, avdf, n, y, c, ic, wk, wk(0,4), ier)
IF (ier == 0) THEN
avar = var
IF (var > zero) avar = var * avdf * avdf
!---CHECK FOR ZERO VARIANCE---
IF (var == zero) THEN
r1 = zero
ELSE
!---FIND LOCAL MINIMUM OF GCV OR THE EXPECTED MEAN SQUARE ERROR---
r1 = one
r2 = ratio * r1
CALL spfit1(x, avh, df, n, r2, p, q, gf2, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
10 CALL spfit1(x, avh, df, n, r1, p, q, gf1, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
IF (gf1 <= gf2) THEN
!---EXIT IF P ZERO---
IF (p <= zero) GO TO 40
r2 = r1
gf2 = gf1
r1 = r1 / ratio
GO TO 10
END IF
r3 = ratio * r2
20 CALL spfit1(x, avh, df, n, r3, p, q, gf3, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
IF (gf3 <= gf2) THEN
!---EXIT IF Q ZERO---
IF (q <= zero) GO TO 40
r2 = r3
gf2 = gf3
r3 = ratio * r3
GO TO 20
END IF
r2 = r3
gf2 = gf3
delta = (r2-r1) / tau
r4 = r1 + delta
r3 = r2 - delta
CALL spfit1(x, avh, df, n, r3, p, q, gf3, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
CALL spfit1(x, avh, df, n, r4, p, q, gf4, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
!---GOLDEN SECTION SEARCH FOR LOCAL MINIMUM---
30 IF (gf3 <= gf4) THEN
r2 = r4
gf2 = gf4
r4 = r3
gf4 = gf3
delta = delta / tau
r3 = r2 - delta
CALL spfit1(x, avh, df, n, r3, p, q, gf3, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
ELSE
r1 = r3
gf1 = gf3
r3 = r4
gf3 = gf4
delta = delta / tau
r4 = r1 + delta
CALL spfit1(x, avh, df, n, r4, p, q, gf4, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
END IF
ERR = (r2-r1) / (r1+r2)
IF (ERR*ERR+one > one .AND. ERR > 1.0D-6) GO TO 30
r1 = (r1+r2) * 0.5D0
END IF
!---CALCULATE SPLINE COEFFICIENTS---
CALL spfit1(x, avh, df, n, r1, p, q, gf1, avar, stat, y, c, ic, wk, &
wk(0,4), wk(0,6), wk(0,7))
40 CALL spcof1(x, avh, f, df, n, p, q, y, c, ic, wk(0,6), wk(0,7))
!---OPTIONALLY CALCULATE STANDARD ERROR ESTIMATES---
IF (var < zero) THEN
avar = stat(6)
var = avar / (avdf*avdf)
END IF
IF (job == 1) CALL sperr1(x, avh, df, n, wk, p, avar, se)
!---UNSCALE DF---
df(1:n) = df(1:n) * avdf
!--PUT STATISTICS IN WK---
DO i = 0, 5
wk(i,1) = stat(i+1)
END DO
wk(5,1) = stat(6) / (avdf*avdf)
wk(6,1) = avdf * avdf
GO TO 70
END IF
END IF
!---CHECK FOR ERROR CONDITION---
! IF (IER .NE. 0) CONTINUE
70 RETURN
END SUBROUTINE cubgcv
SUBROUTINE spint1(x, avh, y, dy, avdy, n, a, c, ic, r, t, ier)
! INITIALIZES THE ARRAYS C, R AND T FOR ONE DIMENSIONAL CUBIC
! SMOOTHING SPLINE FITTING BY SUBROUTINE SPFIT1. THE VALUES
! DF(I) ARE SCALED SO THAT THE SUM OF THEIR SQUARES IS N
! AND THE AVERAGE OF THE DIFFERENCES X(I+1) - X(I) IS CALCULATED
! IN AVH IN ORDER TO AVOID UNDERFLOW AND OVERFLOW PROBLEMS IN SPFIT1.
! SUBROUTINE SETS IER IF ELEMENTS OF X ARE NON-INCREASING,
! IF N IS LESS THAN 3, IF IC IS LESS THAN N-1 OR IF DY(I) IS
! NOT POSITIVE FOR SOME I.
!---SPECIFICATIONS FOR ARGUMENTS---
REAL (dp), INTENT(IN) :: x(:)
REAL (dp), INTENT(OUT) :: avh
REAL (dp), INTENT(IN) :: y(:)
REAL (dp), INTENT(IN OUT) :: dy(:)
REAL (dp), INTENT(OUT) :: avdy
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(OUT) :: a(:)
INTEGER, INTENT(IN) :: ic
REAL (dp), INTENT(OUT) :: c(ic,3)
REAL (dp), INTENT(OUT) :: r(0:n+1,3)
REAL (dp), INTENT(OUT) :: t(0:n+1,2)
INTEGER, INTENT(OUT) :: ier
!---SPECIFICATIONS FOR LOCAL VARIABLES---
INTEGER :: i
REAL (dp) :: e, f, g, h
REAL (dp), PARAMETER :: zero = 0.0_dp
!---INITIALIZATION AND INPUT CHECKING---
ier = 0
IF (n >= 3) THEN
IF (ic < n-1) GO TO 60
!---GET AVERAGE X SPACING IN AVH---
g = zero
DO i = 1, n - 1
h = x(i+1) - x(i)
IF (h <= zero) GO TO 70
g = g + h
END DO
avh = g / (n-1)
!---SCALE RELATIVE WEIGHTS---
g = zero
DO i = 1, n
IF (dy(i) <= zero) GO TO 80
g = g + dy(i) * dy(i)
END DO
avdy = SQRT(g/n)
DO i = 1, n
dy(i) = dy(i) / avdy
END DO
!---INITIALIZE H,F---
h = (x(2)-x(1)) / avh
f = (y(2)-y(1)) / h
!---CALCULATE A,T,R---
DO i = 2, n - 1
g = h
h = (x(i+1)-x(i)) / avh
e = f
f = (y(i+1)-y(i)) / h
a(i) = f - e
t(i,1) = 2.0D0 * (g+h) / 3.0D0
t(i,2) = h / 3.0D0
r(i,3) = dy(i-1) / g
r(i,1) = dy(i+1) / h
r(i,2) = -dy(i) / g - dy(i) / h
END DO
!---CALCULATE C = R'*R---
r(n,2) = zero
r(n,3) = zero
r(n+1,3) = zero
DO i = 2, n - 1
c(i,1) = r(i,1) * r(i,1) + r(i,2) * r(i,2) + r(i,3) * r(i,3)
c(i,2) = r(i,1) * r(i+1,2) + r(i,2) * r(i+1,3)
c(i,3) = r(i,1) * r(i+2,3)
END DO
RETURN
END IF
!---ERROR CONDITIONS---
ier = 130
RETURN
60 ier = 129
RETURN
70 ier = 131
RETURN
80 ier = 132
RETURN
END SUBROUTINE spint1
SUBROUTINE spfit1(x, avh, dy, n, rho, p, q, fun, var, stat, a, c, ic, r, t, &
u, v)
! FITS A CUBIC SMOOTHING SPLINE TO DATA WITH RELATIVE WEIGHTING DY FOR A
! GIVEN VALUE OF THE SMOOTHING PARAMETER RHO USING AN ALGORITHM BASED ON THAT
! OF C.H. REINSCH (1967), NUMER. MATH. 10, 177-183.
! THE TRACE OF THE INFLUENCE MATRIX IS CALCULATED USING AN ALGORITHM DEVELOPED
! BY M.F.HUTCHINSON AND F.R.DE HOOG (NUMER. MATH., IN PRESS), ENABLING THE
! GENERALIZED CROSS VALIDATION AND RELATED STATISTICS TO BE CALCULATED
! IN ORDER N OPERATIONS.
! THE ARRAYS A, C, R AND T ARE ASSUMED TO HAVE BEEN INITIALIZED
! BY THE SUBROUTINE SPINT1. OVERFLOW AND UNDERFLOW PROBLEMS ARE
! AVOIDED BY USING P=RHO/(1 + RHO) AND Q=1/(1 + RHO) INSTEAD OF
! RHO AND BY SCALING THE DIFFERENCES X(I+1) - X(I) BY AVH.
! THE VALUES IN DF ARE ASSUMED TO HAVE BEEN SCALED SO THAT THE
! SUM OF THEIR SQUARED VALUES IS N. THE VALUE IN VAR, WHEN IT IS
! NON-NEGATIVE, IS ASSUMED TO HAVE BEEN SCALED TO COMPENSATE FOR
! THE SCALING OF THE VALUES IN DF.
! THE VALUE RETURNED IN FUN IS AN ESTIMATE OF THE TRUE MEAN SQUARE WHEN VAR IS
! NON-NEGATIVE, AND IS THE GENERALIZED CROSS VALIDATION WHEN VAR IS NEGATIVE.
!---SPECIFICATIONS FOR ARGUMENTS---
REAL (dp), INTENT(IN) :: x(:)
REAL (dp), INTENT(IN OUT) :: avh
REAL (dp), INTENT(IN) :: dy(:)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: rho
REAL (dp), INTENT(OUT) :: p
REAL (dp), INTENT(OUT) :: q
REAL (dp), INTENT(OUT) :: fun
REAL (dp), INTENT(IN) :: var
REAL (dp), INTENT(OUT) :: stat(6)
REAL (dp), INTENT(IN) :: a(:)
INTEGER, INTENT(IN) :: ic
REAL (dp), INTENT(IN) :: c(ic,3)
REAL (dp), INTENT(OUT) :: r(0:n+1,3)
REAL (dp), INTENT(IN) :: t(0:n+1,2)
REAL (dp), INTENT(OUT) :: u(0:n+1)
REAL (dp), INTENT(OUT) :: v(0:n+1)
!---LOCAL VARIABLES---
INTEGER :: i
REAL (dp) :: e, f, g, h, zero = 0.0_dp, one = 1.0_dp, two = 2.0_dp, rho1
!---USE P AND Q INSTEAD OF RHO TO PREVENT OVERFLOW OR UNDERFLOW---
rho1 = one + rho
p = rho / rho1
q = one / rho1
IF (rho1 == one) p = zero
IF (rho1 == rho) q = zero
!---RATIONAL CHOLESKY DECOMPOSITION OF P*C + Q*T---
f = zero
g = zero
h = zero
DO i = 0, 1
r(i,1) = zero
END DO
DO i = 2, n - 1
r(i-2,3) = g * r(i-2,1)
r(i-1,2) = f * r(i-1,1)
r(i,1) = one / (p*c(i,1) + q*t(i,1) - f*r(i-1,2) - g*r(i-2,3))
f = p * c(i,2) + q * t(i,2) - h * r(i-1,2)
g = h
h = p * c(i,3)
END DO
!---SOLVE FOR U---
u(0) = zero
u(1) = zero
DO i = 2, n - 1
u(i) = a(i) - r(i-1,2) * u(i-1) - r(i-2,3) * u(i-2)
END DO
u(n) = zero
u(n+1) = zero
DO i = n - 1, 2, -1
u(i) = r(i,1) * u(i) - r(i,2) * u(i+1) - r(i,3) * u(i+2)
END DO
!---CALCULATE RESIDUAL VECTOR V---
e = zero
h = zero
DO i = 1, n - 1
g = h
h = (u(i+1)-u(i)) / ((x(i+1)-x(i))/avh)
v(i) = dy(i) * (h-g)
e = e + v(i) * v(i)
END DO
v(n) = dy(n) * (-h)
e = e + v(n) * v(n)
!---CALCULATE UPPER THREE BANDS OF INVERSE MATRIX---
r(n,1) = zero
r(n,2) = zero
r(n+1,1) = zero
DO i = n - 1, 2, -1
g = r(i,2)
h = r(i,3)
r(i,2) = -g * r(i+1,1) - h * r(i+1,2)
r(i,3) = -g * r(i+1,2) - h * r(i+2,1)
r(i,1) = r(i,1) - g * r(i,2) - h * r(i,3)
END DO
!---CALCULATE TRACE---
f = zero
g = zero
h = zero
DO i = 2, n - 1
f = f + r(i,1) * c(i,1)
g = g + r(i,2) * c(i,2)
h = h + r(i,3) * c(i,3)
END DO
f = f + two * (g+h)
!---CALCULATE STATISTICS---
stat(1) = p
stat(2) = f * p
stat(3) = n * e / (f*f)
stat(4) = e * p * p / n
stat(6) = e * p / f
IF (var < zero) THEN
stat(5) = stat(6) - stat(4)
fun = stat(3)
ELSE
stat(5) = MAX(stat(4) - two*var*stat(2)/n + var, zero)
fun = stat(5)
END IF
RETURN
END SUBROUTINE spfit1
SUBROUTINE sperr1(x, avh, dy, n, r, p, var, se)
! CALCULATES BAYESIAN ESTIMATES OF THE STANDARD ERRORS OF THE FITTED
! VALUES OF A CUBIC SMOOTHING SPLINE BY CALCULATING THE DIAGONAL ELEMENTS
! OF THE INFLUENCE MATRIX.
!---SPECIFICATIONS FOR ARGUMENTS---
REAL (dp), INTENT(IN) :: x(:)
REAL (dp), INTENT(IN) :: avh
REAL (dp), INTENT(IN) :: dy(:)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: r(0:n+1,3)
REAL (dp), INTENT(IN) :: p
REAL (dp), INTENT(IN) :: var
REAL (dp), INTENT(OUT) :: se(:)
!---SPECIFICATIONS FOR LOCAL VARIABLES---
INTEGER :: i
REAL (dp) :: f, g, h, f1, g1, h1
REAL (dp), PARAMETER :: zero = 0.0_dp, one = 1.0_dp
!---INITIALIZE---
h = avh / (x(2)-x(1))
se(1) = one - p * dy(1) * dy(1) * h * h * r(2,1)
r(1,1) = zero
r(1,2) = zero
r(1,3) = zero
!---CALCULATE DIAGONAL ELEMENTS---
DO i = 2, n - 1
f = h
h = avh / (x(i+1)-x(i))
g = -f - h
f1 = f * r(i-1,1) + g * r(i-1,2) + h * r(i-1,3)
g1 = f * r(i-1,2) + g * r(i,1) + h * r(i,2)
h1 = f * r(i-1,3) + g * r(i,2) + h * r(i+1,1)
se(i) = one - p * dy(i) * dy(i) * (f*f1+g*g1+h*h1)
END DO
se(n) = one - p * dy(n) * dy(n) * h * h * r(n-1,1)
!---CALCULATE STANDARD ERROR ESTIMATES---
DO i = 1, n
se(i) = SQRT(MAX(se(i)*var, zero)) * dy(i)
END DO
RETURN
END SUBROUTINE sperr1
SUBROUTINE spcof1(x, avh, y, dy, n, p, q, a, c, ic, u, v)
! CALCULATES COEFFICIENTS OF A CUBIC SMOOTHING SPLINE FROM
! PARAMETERS CALCULATED BY SUBROUTINE SPFIT1.
!---SPECIFICATIONS FOR ARGUMENTS---
REAL (dp), INTENT(IN) :: x(:)
REAL (dp), INTENT(IN OUT) :: avh
REAL (dp), INTENT(IN) :: y(:)
REAL (dp), INTENT(IN) :: dy(:)
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: p
REAL (dp), INTENT(IN) :: q
REAL (dp), INTENT(OUT) :: a(:)
INTEGER, INTENT(IN) :: ic
REAL (dp), INTENT(OUT) :: c(ic,3)
REAL (dp), INTENT(OUT) :: u(0:n+1)
REAL (dp), INTENT(IN) :: v(0:n+1)
!---SPECIFICATIONS FOR LOCAL VARIABLES---
INTEGER :: i
REAL (dp) :: h, qh
!---CALCULATE A---
qh = q / (avh*avh)
DO i = 1, n
a(i) = y(i) - p * dy(i) * v(i)
u(i) = qh * u(i)
END DO
!---CALCULATE C---
DO i = 1, n - 1
h = x(i+1) - x(i)
c(i,3) = (u(i+1) - u(i)) / (3.0_dp*h)
c(i,1) = (a(i+1) - a(i)) / h - (h*c(i,3) + u(i)) * h
c(i,2) = u(i)
END DO
RETURN
END SUBROUTINE spcof1
END MODULE Cubic_Spline_GCV