-
Notifications
You must be signed in to change notification settings - Fork 1
/
Jaynes cumming model.nb
338 lines (325 loc) · 12.5 KB
/
Jaynes cumming model.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 12314, 330]
NotebookOptionsPosition[ 11382, 306]
NotebookOutlinePosition[ 11828, 323]
CellTagsIndexPosition[ 11785, 320]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Jaynes - Cumming model analysis", "Title",
CellChangeTimes->{{3.864589104833621*^9,
3.864589120782432*^9}},ExpressionUUID->"f70e7727-e4f6-4281-a65f-\
6a9142067c97"],
Cell["C\[EAcute]sar Muro Cabral", "Text",
CellChangeTimes->{{3.864589137354685*^9,
3.864589157980602*^9}},ExpressionUUID->"8b8a8d7a-358a-4656-b15c-\
ea5de9ebea67"],
Cell[TextData[{
"Two level model fully quantized Hamiltonian of a two level system \
interacting with a single-mode cavity field where the zero enery is between \
the levels. The dynamics of the wave function is ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"|", " ",
RowBox[{
RowBox[{"\[Psi]", " ",
RowBox[{"(", "t", ")"}]}], " ", ">"}]}], " ", "=",
RowBox[{"|",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "g"], "(", "t", ")"}], ">"}], "|",
RowBox[{"g", ">", "-"}]}]}], TraditionalForm]],ExpressionUUID->
"ccf0d7c2-1ce8-41b3-a341-dc05f8fe92aa"],
"|",
Cell[BoxData[
FormBox[
SubscriptBox["\[Psi]", "e"], TraditionalForm]],ExpressionUUID->
"5e506617-3d16-46b4-bfe0-f35af718189d"],
"(t)>|e>, where ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{"|",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "g"], "(", "t", ")"}], ">"}]}], " ", "=",
RowBox[{
RowBox[{
RowBox[{"-", "i"}], " ",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"n", "=", "0"}], "\[Infinity]"],
RowBox[{
SubscriptBox["C", "n"],
RowBox[{"sin", "(",
RowBox[{"\[Lambda]t",
SqrtBox[
RowBox[{"n", "+", "1"}]]}], ")"}]}]}]}], "|",
RowBox[{
RowBox[{"n", "+", "1"}], ">"}]}]}], ",", " ", "and"}],
TraditionalForm]],ExpressionUUID->"f8c64387-a4ce-44ad-b74e-43a5c7b11961"],
" ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"|",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "e"], "(", "t", ")"}], ">"}]}], " ", "=", " ",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"n", "=", "0"}], "\[Infinity]"],
RowBox[{
SubscriptBox["C", "n"],
RowBox[{"cos", "(",
RowBox[{"\[Lambda]t",
SqrtBox[
RowBox[{"n", "+", "1"}]]}], ")"}]}]}], "|",
RowBox[{"n", ">"}]}]}], TraditionalForm]],ExpressionUUID->
"e93fc87f-9158-4409-9063-d5830f0d9083"],
". Thus the atomic inversion is given by ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"W",
RowBox[{"(", "t", ")"}]}], "=",
RowBox[{
RowBox[{
RowBox[{"Pi",
RowBox[{"(", "t", ")"}]}], "-",
RowBox[{"Pf", "(", "t", ")"}]}], "=", " ",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"n", "=", "0"}], "\[Infinity]"],
RowBox[{"|",
SubscriptBox["C", "n"],
SuperscriptBox["|", "2"],
RowBox[{"cos", "(",
RowBox[{"2", "\[Lambda]t",
SqrtBox[
RowBox[{"n", "+", "1"}]]}]}]}]}]}]}], TraditionalForm]],
ExpressionUUID->"7f172d8b-3d60-494e-820b-19cd054fae28"],
"), where ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"\[CapitalOmega]",
RowBox[{"(", "n", ")"}]}], "=",
RowBox[{"2", "\[Lambda]",
SqrtBox[
RowBox[{"n", "+", "1"}]], "is"}]}], TraditionalForm]],ExpressionUUID->
"a716b927-176f-4282-b823-f139f509a211"],
" the quantum electrodynamics Rabi frequency. For a coherent state ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["C", "n"], "=",
RowBox[{
SuperscriptBox["e",
RowBox[{"-",
RowBox[{"|", "\[Alpha]",
SuperscriptBox["|", "2"],
RowBox[{"/", "2"}]}]}]],
FractionBox[
SuperscriptBox["\[Alpha]", "n"],
SqrtBox[
RowBox[{"n", "!"}]]]}]}], TraditionalForm]],ExpressionUUID->
"db93a08c-0b59-4b8f-8143-4302c379552a"],
", and the inversion is ",
Cell[BoxData[{
FormBox[
RowBox[{
RowBox[{"W", " ",
RowBox[{"(", "t", ")"}]}], " ", "=", " ",
SuperscriptBox["e",
RowBox[{"-", "m"}]]}], TraditionalForm], "\n",
FormBox[
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"n", "=", "0"}], "\[Infinity]"],
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["m", "n"], "/",
RowBox[{"n", "!"}]}], ")"}],
RowBox[{"cos", "(",
RowBox[{"2", "\[Lambda]t",
SqrtBox[
RowBox[{"n", "+", "1"}]]}]}]}]}], TraditionalForm]}],ExpressionUUID->
"426e11bd-07e5-4b9b-8fc4-cce9c20535a8"],
". Let us define T=\[Lambda]t."
}], "Text",
CellChangeTimes->{{3.86458938595854*^9, 3.8645894733311543`*^9}, {
3.864590271082769*^9, 3.8645903170463552`*^9}, {3.8645904279147344`*^9,
3.8645904483258023`*^9}, {3.8645905439921513`*^9,
3.8645907872107925`*^9}, {3.8645918421061773`*^9,
3.8645919864341908`*^9}, {3.8645920177225776`*^9,
3.8645921533192873`*^9}, {3.8645922866959715`*^9,
3.8645923074223843`*^9}, {3.8645923561991167`*^9, 3.864592379554524*^9}, {
3.864592639775996*^9, 3.8645926573014383`*^9}, {3.8645929580495567`*^9,
3.864593095466236*^9}, {3.8645931270689588`*^9, 3.864593184857607*^9}, {
3.8645937814314103`*^9, 3.864593806168502*^9}, {3.864594106558428*^9,
3.8645941103529034`*^9},
3.8645959911770077`*^9},ExpressionUUID->"87568547-a49d-4a3d-89da-\
79ec1bdf27d5"],
Cell[BoxData[
RowBox[{
RowBox[{"Wi", "[",
RowBox[{"m_", ",", "n_", ",", "T_"}], "]"}], ":=",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-", "m"}], "]"}],
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["m", "j"],
RowBox[{"j", "!"}]],
RowBox[{"Cos", "[",
RowBox[{"2", "*", "T",
SqrtBox[
RowBox[{"j", "+", "1"}]]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.864593191922346*^9, 3.864593297577133*^9}, {
3.864593330301042*^9, 3.864593331174751*^9}, 3.864593380806385*^9, {
3.8645934824790335`*^9, 3.8645934847817316`*^9}, {3.8645937620665317`*^9,
3.864593763135913*^9}, {3.8645941009331226`*^9, 3.864594102985717*^9}, {
3.8645941807858095`*^9, 3.8645941929265223`*^9}, {3.864594813598641*^9,
3.864594814829096*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"273fe56c-3896-4bd5-bb4f-9a62fe6f568d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Wi", "[",
RowBox[{"m", ",", "n", ",", "T"}], "]"}], ",",
RowBox[{"{",
RowBox[{"T", ",", "0", ",", "80"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<Scaled time \[Lambda]t\>\"", ",",
"\"\<Atomic inversion population\>\""}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"m", ",", "10", ",", "\"\<Mean number of phtons\>\""}], "}"}],
",", "10", ",", "100", ",", "5", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",", "10", ",", "\"\<Number of the top of sum\>\""}],
"}"}], ",", "10", ",", "200", ",", "10", ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
RowBox[{"SynchronousInitialization", "\[Rule]", "False"}], ",", " ",
RowBox[{"SynchronousUpdating", "\[Rule]", "False"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8645933043266573`*^9, 3.8645933450962644`*^9}, {
3.864593400782844*^9, 3.864593401817294*^9}, {3.8645941147913237`*^9,
3.864594126986373*^9}, {3.864594199886074*^9, 3.8645942698985443`*^9}, {
3.8645944271321173`*^9, 3.8645945223474426`*^9}, {3.8645945618346596`*^9,
3.864594610173828*^9}, {3.8645946457266235`*^9, 3.8645946495360622`*^9}, {
3.8645946799259443`*^9, 3.864594771067773*^9}, {3.864594903778814*^9,
3.864594931943412*^9}, {3.8645949822023363`*^9, 3.8645950802747865`*^9}, {
3.86459514582714*^9, 3.8645951497857933`*^9}, {3.864595183316066*^9,
3.8645951837987013`*^9}, {3.8645952170672464`*^9, 3.864595244880661*^9}, {
3.864595305074307*^9, 3.86459531076188*^9}, {3.864595731094692*^9,
3.864595732463222*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"a1d679fa-3e49-48f0-9002-e1edef6e58d0"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`m$$ = 50, $CellContext`n$$ = 70,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`m$$], 10, "Mean number of phtons"}, 10, 100, 5}, {{
Hold[$CellContext`n$$], 10, "Number of the top of sum"}, 10, 200, 10}},
Typeset`size$$ = {360., {112., 117.35932571573798`}}, Typeset`update$$ =
0, Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`m$$ = 10, $CellContext`n$$ = 10},
"ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Plot[
$CellContext`Wi[$CellContext`m$$, $CellContext`n$$, $CellContext`T], \
{$CellContext`T, 0, 80}, Frame -> True,
FrameLabel -> {
"Scaled time \[Lambda]t", "Atomic inversion population"}, PlotRange ->
All], "Specifications" :> {{{$CellContext`m$$, 10,
"Mean number of phtons"}, 10, 100, 5, Appearance ->
"Labeled"}, {{$CellContext`n$$, 10, "Number of the top of sum"}, 10,
200, 10, Appearance -> "Labeled"}},
"Options" :> {
SynchronousInitialization -> False, SynchronousUpdating -> False},
"DefaultOptions" :> {}],
ImageSizeCache->{753., {143.13403328722342`, 148.86596671277658`}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->False,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{3.8645933506114902`*^9, 3.8645934607230535`*^9,
3.8645937584156523`*^9, 3.864594129367011*^9, 3.8645947783069386`*^9,
3.8645950814001265`*^9, 3.8645952578815355`*^9, 3.864595321644495*^9,
3.8645957450850124`*^9},
CellLabel->"Out[2]=",ExpressionUUID->"6ac5eadc-fab6-4561-a861-e27eca0d1fab"]
}, Open ]]
}, Open ]]
},
WindowSize->{1141.2, 573.6},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
TaggingRules-><|"TryRealOnly" -> False|>,
FrontEndVersion->"13.0 for Microsoft Windows (64-bit) (February 4, 2022)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"32ff0e17-43f5-42d3-aaec-29dbe2e182d0"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 174, 3, 98, "Title",ExpressionUUID->"f70e7727-e4f6-4281-a65f-6a9142067c97"],
Cell[757, 27, 167, 3, 35, "Text",ExpressionUUID->"8b8a8d7a-358a-4656-b15c-ea5de9ebea67"],
Cell[927, 32, 4933, 150, 148, "Text",ExpressionUUID->"87568547-a49d-4a3d-89da-79ec1bdf27d5"],
Cell[5863, 184, 991, 25, 51, "Input",ExpressionUUID->"273fe56c-3896-4bd5-bb4f-9a62fe6f568d"],
Cell[CellGroupData[{
Cell[6879, 213, 2034, 41, 67, "Input",ExpressionUUID->"a1d679fa-3e49-48f0-9002-e1edef6e58d0"],
Cell[8916, 256, 2438, 46, 311, "Output",ExpressionUUID->"6ac5eadc-fab6-4561-a861-e27eca0d1fab"]
}, Open ]]
}, Open ]]
}
]
*)