-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
CocoApi.m
314 lines (301 loc) · 12.8 KB
/
CocoApi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
classdef CocoApi
% Interface for accessing the Microsoft COCO dataset.
%
% Microsoft COCO is a large image dataset designed for object detection,
% segmentation, and caption generation. CocoApi.m is a Matlab API that
% assists in loading, parsing and visualizing the annotations in COCO.
% Please visit http://mscoco.org/ for more information on COCO, including
% for the data, paper, and tutorials. The exact format of the annotations
% is also described on the COCO website. For example usage of the CocoApi
% please see cocoDemo.m. In addition to this API, please download both
% the COCO images and annotations in order to run the demo.
%
% An alternative to using the API is to load the annotations directly
% into a Matlab struct. This can be achieved via:
% data = gason(fileread(annFile));
% Using the API provides additional utility functions. Note that this API
% supports both *instance* and *caption* annotations. In the case of
% captions not all functions are defined (e.g. categories are undefined).
%
% The following API functions are defined:
% CocoApi - Load COCO annotation file and prepare data structures.
% getAnnIds - Get ann ids that satisfy given filter conditions.
% getCatIds - Get cat ids that satisfy given filter conditions.
% getImgIds - Get img ids that satisfy given filter conditions.
% loadAnns - Load anns with the specified ids.
% loadCats - Load cats with the specified ids.
% loadImgs - Load imgs with the specified ids.
% showAnns - Display the specified annotations.
% loadRes - Load algorithm results and create API for accessing them.
% Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
% Help on each functions can be accessed by: "help CocoApi>function".
%
% See also CocoApi>CocoApi, CocoApi>getAnnIds, CocoApi>getCatIds,
% CocoApi>getImgIds, CocoApi>loadAnns, CocoApi>loadCats,
% CocoApi>loadImgs, CocoApi>showAnns, CocoApi>loadRes
%
% Microsoft COCO Toolbox. version 2.0
% Data, paper, and tutorials available at: http://mscoco.org/
% Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
% Licensed under the Simplified BSD License [see coco/license.txt]
properties
data % COCO annotation data structure
inds % data structures for fast indexing
end
methods
function coco = CocoApi( annFile )
% Load COCO annotation file and prepare data structures.
%
% USAGE
% coco = CocoApi( annFile )
%
% INPUTS
% annFile - COCO annotation filename
%
% OUTPUTS
% coco - initialized coco object
fprintf('Loading and preparing annotations... '); clk=clock;
if(isstruct(annFile)), coco.data=annFile; else
coco.data=gason(fileread(annFile)); end
is.imgIds = [coco.data.images.id]';
is.imgIdsMap = makeMap(is.imgIds);
if( isfield(coco.data,'annotations') )
ann=coco.data.annotations; o=[ann.image_id];
if(isfield(ann,'category_id')), o=o*1e10+[ann.category_id]; end
[~,o]=sort(o); ann=ann(o); coco.data.annotations=ann;
s={'category_id','area','iscrowd','id','image_id'};
t={'annCatIds','annAreas','annIscrowd','annIds','annImgIds'};
for f=1:5, if(isfield(ann,s{f})), is.(t{f})=[ann.(s{f})]'; end; end
is.annIdsMap = makeMap(is.annIds);
is.imgAnnIdsMap = makeMultiMap(is.imgIds,...
is.imgIdsMap,is.annImgIds,is.annIds,0);
end
if( isfield(coco.data,'categories') )
is.catIds = [coco.data.categories.id]';
is.catIdsMap = makeMap(is.catIds);
if(isfield(is,'annCatIds')), is.catImgIdsMap = makeMultiMap(...
is.catIds,is.catIdsMap,is.annCatIds,is.annImgIds,1); end
end
coco.inds=is; fprintf('DONE (t=%0.2fs).\n',etime(clock,clk));
function map = makeMap( keys )
% Make map from key to integer id associated with key.
if(isempty(keys)), map=containers.Map(); return; end
map=containers.Map(keys,1:length(keys));
end
function map = makeMultiMap( keys, keysMap, keysAll, valsAll, sqz )
% Make map from keys to set of vals associated with each key.
js=values(keysMap,num2cell(keysAll)); js=[js{:}];
m=length(js); n=length(keys); k=zeros(1,n);
for i=1:m, j=js(i); k(j)=k(j)+1; end; vs=zeros(n,max(k)); k(:)=0;
for i=1:m, j=js(i); k(j)=k(j)+1; vs(j,k(j))=valsAll(i); end
map = containers.Map('KeyType','double','ValueType','any');
if(sqz), for j=1:n, map(keys(j))=unique(vs(j,1:k(j))); end
else for j=1:n, map(keys(j))=vs(j,1:k(j)); end; end
end
end
function ids = getAnnIds( coco, varargin )
% Get ann ids that satisfy given filter conditions.
%
% USAGE
% ids = coco.getAnnIds( params )
%
% INPUTS
% params - filtering parameters (struct or name/value pairs)
% setting any filter to [] skips that filter
% .imgIds - [] get anns for given imgs
% .catIds - [] get anns for given cats
% .areaRng - [] get anns for given area range (e.g. [0 inf])
% .iscrowd - [] get anns for given crowd label (0 or 1)
%
% OUTPUTS
% ids - integer array of ann ids
def = {'imgIds',[],'catIds',[],'areaRng',[],'iscrowd',[]};
[imgIds,catIds,ar,iscrowd] = getPrmDflt(varargin,def,1);
if( length(imgIds)==1 )
t = coco.loadAnns(coco.inds.imgAnnIdsMap(imgIds));
if(~isempty(catIds)), t = t(ismember([t.category_id],catIds)); end
if(~isempty(ar)), a=[t.area]; t = t(a>=ar(1) & a<=ar(2)); end
if(~isempty(iscrowd)), t = t([t.iscrowd]==iscrowd); end
ids = [t.id];
else
ids=coco.inds.annIds; K = true(length(ids),1); t = coco.inds;
if(~isempty(imgIds)), K = K & ismember(t.annImgIds,imgIds); end
if(~isempty(catIds)), K = K & ismember(t.annCatIds,catIds); end
if(~isempty(ar)), a=t.annAreas; K = K & a>=ar(1) & a<=ar(2); end
if(~isempty(iscrowd)), K = K & t.annIscrowd==iscrowd; end
ids=ids(K);
end
end
function ids = getCatIds( coco, varargin )
% Get cat ids that satisfy given filter conditions.
%
% USAGE
% ids = coco.getCatIds( params )
%
% INPUTS
% params - filtering parameters (struct or name/value pairs)
% setting any filter to [] skips that filter
% .catNms - [] get cats for given cat names
% .supNms - [] get cats for given supercategory names
% .catIds - [] get cats for given cat ids
%
% OUTPUTS
% ids - integer array of cat ids
if(~isfield(coco.data,'categories')), ids=[]; return; end
def={'catNms',[],'supNms',[],'catIds',[]}; t=coco.data.categories;
[catNms,supNms,catIds] = getPrmDflt(varargin,def,1);
if(~isempty(catNms)), t = t(ismember({t.name},catNms)); end
if(~isempty(supNms)), t = t(ismember({t.supercategory},supNms)); end
if(~isempty(catIds)), t = t(ismember([t.id],catIds)); end
ids = [t.id];
end
function ids = getImgIds( coco, varargin )
% Get img ids that satisfy given filter conditions.
%
% USAGE
% ids = coco.getImgIds( params )
%
% INPUTS
% params - filtering parameters (struct or name/value pairs)
% setting any filter to [] skips that filter
% .imgIds - [] get imgs for given ids
% .catIds - [] get imgs with all given cats
%
% OUTPUTS
% ids - integer array of img ids
def={'imgIds',[],'catIds',[]}; ids=coco.inds.imgIds;
[imgIds,catIds] = getPrmDflt(varargin,def,1);
if(~isempty(imgIds)), ids=intersect(ids,imgIds); end
if(isempty(catIds)), return; end
t=values(coco.inds.catImgIdsMap,num2cell(catIds));
for i=1:length(t), ids=intersect(ids,t{i}); end
end
function anns = loadAnns( coco, ids )
% Load anns with the specified ids.
%
% USAGE
% anns = coco.loadAnns( ids )
%
% INPUTS
% ids - integer ids specifying anns
%
% OUTPUTS
% anns - loaded ann objects
ids = values(coco.inds.annIdsMap,num2cell(ids));
anns = coco.data.annotations([ids{:}]);
end
function cats = loadCats( coco, ids )
% Load cats with the specified ids.
%
% USAGE
% cats = coco.loadCats( ids )
%
% INPUTS
% ids - integer ids specifying cats
%
% OUTPUTS
% cats - loaded cat objects
if(~isfield(coco.data,'categories')), cats=[]; return; end
ids = values(coco.inds.catIdsMap,num2cell(ids));
cats = coco.data.categories([ids{:}]);
end
function imgs = loadImgs( coco, ids )
% Load imgs with the specified ids.
%
% USAGE
% imgs = coco.loadImgs( ids )
%
% INPUTS
% ids - integer ids specifying imgs
%
% OUTPUTS
% imgs - loaded img objects
ids = values(coco.inds.imgIdsMap,num2cell(ids));
imgs = coco.data.images([ids{:}]);
end
function hs = showAnns( coco, anns )
% Display the specified annotations.
%
% USAGE
% hs = coco.showAnns( anns )
%
% INPUTS
% anns - annotations to display
%
% OUTPUTS
% hs - handles to segment graphic objects
n=length(anns); if(n==0), return; end
r=.4:.2:1; [r,g,b]=ndgrid(r,r,r); cs=[r(:) g(:) b(:)];
cs=cs(randperm(size(cs,1)),:); cs=repmat(cs,100,1);
if( isfield( anns,'keypoints') )
for i=1:n
a=anns(i); if(isfield(a,'iscrowd') && a.iscrowd), continue; end
seg={}; if(isfield(a,'segmentation')), seg=a.segmentation; end
k=a.keypoints; x=k(1:3:end)+1; y=k(2:3:end)+1; v=k(3:3:end);
k=coco.loadCats(a.category_id); k=k.skeleton; c=cs(i,:); hold on
p={'FaceAlpha',.25,'LineWidth',2,'EdgeColor',c}; % polygon
for j=seg, xy=j{1}+.5; fill(xy(1:2:end),xy(2:2:end),c,p{:}); end
p={'Color',c,'LineWidth',3}; % skeleton
for j=k, s=j{1}; if(all(v(s)>0)), line(x(s),y(s),p{:}); end; end
p={'MarkerSize',8,'MarkerFaceColor',c,'MarkerEdgeColor'}; % pnts
plot(x(v>0),y(v>0),'o',p{:},'k');
plot(x(v>1),y(v>1),'o',p{:},c); hold off;
end
elseif( any(isfield(anns,{'segmentation','bbox'})) )
if(~isfield(anns,'iscrowd')), [anns(:).iscrowd]=deal(0); end
if(~isfield(anns,'segmentation')), S={anns.bbox}; %#ok<ALIGN>
for i=1:n, x=S{i}(1); w=S{i}(3); y=S{i}(2); h=S{i}(4);
anns(i).segmentation={[x,y,x,y+h,x+w,y+h,x+w,y]}; end; end
S={anns.segmentation}; hs=zeros(10000,1); k=0; hold on;
pFill={'FaceAlpha',.4,'LineWidth',3};
for i=1:n
if(anns(i).iscrowd), C=[.01 .65 .40]; else C=rand(1,3); end
if(isstruct(S{i})), M=double(MaskApi.decode(S{i})); k=k+1;
hs(k)=imagesc(cat(3,M*C(1),M*C(2),M*C(3)),'Alphadata',M*.5);
else for j=1:length(S{i}), P=S{i}{j}+.5; k=k+1;
hs(k)=fill(P(1:2:end),P(2:2:end),C,pFill{:}); end
end
end
hs=hs(1:k); hold off;
elseif( isfield(anns,'caption') )
S={anns.caption};
for i=1:n, S{i}=[int2str(i) ') ' S{i} '\newline']; end
S=[S{:}]; title(S,'FontSize',12);
end
end
function cocoRes = loadRes( coco, resFile )
% Load algorithm results and create API for accessing them.
%
% The API for accessing and viewing algorithm results is identical to
% the CocoApi for the ground truth. The single difference is that the
% ground truth results are replaced by the algorithm results.
%
% USAGE
% cocoRes = coco.loadRes( resFile )
%
% INPUTS
% resFile - COCO results filename
%
% OUTPUTS
% cocoRes - initialized results API
fprintf('Loading and preparing results... '); clk=clock;
cdata=coco.data; R=gason(fileread(resFile)); m=length(R);
valid=ismember([R.image_id],[cdata.images.id]);
if(~all(valid)), error('Results provided for invalid images.'); end
t={'segmentation','bbox','keypoints','caption'}; t=t{isfield(R,t)};
if(strcmp(t,'caption'))
for i=1:m, R(i).id=i; end; imgs=cdata.images;
cdata.images=imgs(ismember([imgs.id],[R.image_id]));
else
assert(all(isfield(R,{'category_id','score',t})));
s=cat(1,R.(t)); if(strcmp(t,'bbox')), a=s(:,3).*s(:,4); end
if(strcmp(t,'segmentation')), a=MaskApi.area(s); end
if(strcmp(t,'keypoints')), x=s(:,1:3:end)'; y=s(:,2:3:end)';
a=(max(x)-min(x)).*(max(y)-min(y)); end
for i=1:m, R(i).area=a(i); R(i).id=i; end
end
fprintf('DONE (t=%0.2fs).\n',etime(clock,clk));
cdata.annotations=R; cocoRes=CocoApi(cdata);
end
end
end