Skip to content

Create animated bar chart races in Python with matplotlib

License

Notifications You must be signed in to change notification settings

coder-wen/bar_chart_race

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bar Chart Race

PyPI - License

Make animated bar and line chart races in Python with matplotlib or plotly.

img

Official Documentation

Visit the bar_chart_race official documentation for detailed usage instructions.

Installation

Install with either:

  • pip install bar_chart_race
  • conda install -c conda-forge bar_chart_race

Quickstart

Must begin with a pandas DataFrame containing 'wide' data where:

  • Every row represents a single period of time
  • Each column holds the value for a particular category
  • The index contains the time component (optional)

The data below is an example of properly formatted data. It shows total deaths from COVID-19 for several countries by date.

img

Create bar and line chart races

There are three core functions available to construct the animations.

  • bar_chart_race
  • bar_chart_race_plotly
  • line_chart_race

The above animation was created with the help of matplotlib using the following call to bar_chart_race.

import bar_chart_race as bcr
df = bcr.load_dataset('covid19_tutorial')
bcr.bar_chart_race(
        df=df, 
        filename='../docs/images/covid19_horiz.gif', 
        orientation='h', 
        sort='desc', 
        n_bars=8, 
        fixed_order=False, 
        fixed_max=True, 
        steps_per_period=20, 
        period_length=500, 
        end_period_pause=0,
        interpolate_period=False, 
        period_label={'x': .98, 'y': .3, 'ha': 'right', 'va': 'center'}, 
        period_template='%B %d, %Y', 
        period_summary_func=lambda v, r: {'x': .98, 'y': .2, 
                                          's': f'Total deaths: {v.sum():,.0f}', 
                                          'ha': 'right', 'size': 11}, 
        perpendicular_bar_func='median', 
        colors='dark12', 
        title='COVID-19 Deaths by Country', 
        bar_size=.95, 
        bar_textposition='inside',
        bar_texttemplate='{x:,.0f}', 
        bar_label_font=7, 
        tick_label_font=7, 
        tick_template='{x:,.0f}',
        shared_fontdict=None, 
        scale='linear', 
        fig=None, 
        writer=None, 
        bar_kwargs={'alpha': .7},
        fig_kwargs={'figsize': (6, 3.5), 'dpi': 144},
        filter_column_colors=False) 

Save animation to disk or embed into a Jupyter Notebook

If you are working within a Jupyter Notebook, leave the filename as None and it will be automatically embedded into a Jupyter Notebook.

bcr.bar_chart_race(df=df, filename=None)

img

Customization

There are many options to customize the bar chart race to get the animation you desire. Below, we have an animation where the maximum x-value and order of the bars are set for the entire duration. A custom summary label and perpendicular bar of the median is also added.

def period_summary(values, ranks):
    top2 = values.nlargest(2)
    leader = top2.index[0]
    lead = top2.iloc[0] - top2.iloc[1]
    s = f'{leader} by {lead:.0f}'
    return {'s': s, 'x': .99, 'y': .03, 'ha': 'right', 'size': 8}

df_baseball = bcr.load_dataset('baseball').pivot(index='year',
                                                 columns='name',
                                                 values='hr')
df_baseball.bcr.bar_chart_race(
                   period_length=1000,
                   fixed_max=True, 
                   fixed_order=True, 
                   n_bars=10,
                   period_summary_func=period_summary,
                   period_label={'x': .99, 'y': .1},
                   period_template='Season {x:,.0f}',
                   title='Top 10 Home Run Hitters by Season Played')

img

About

Create animated bar chart races in Python with matplotlib

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%