Skip to content

conal/lambda-ccc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Convert lambda expressions to CCC combinators and then to circuits.

Additional info:

Dependencies:

To use these versions of KURE and HERMIT, clone the repos (or pull if already cloned), and use "git checkout [commit-id]".

To try out:

  • cabal install circat and lambda-ccc (in that order)

  • In a shell, cd to lambda-ccc/test, and type make. If all works, you'll see something like the following output:

    bash-3.2$ ./test
    [starting HERMIT v0.5.0.1 on TreeTest.hs]
    % ghc TreeTest.hs -fforce-recomp -O2 -dcore-lint -fsimple-list-literals -fexpose-all-unfoldings -fplugin=LambdaCCC.Monomorphize -fplugin-opt=LambdaCCC.Monomorphize:-v0 -fplugin-opt=LambdaCCC.Monomorphize:DoTree.hss -fplugin-opt=LambdaCCC.Monomorphize:resume -fplugin-opt=LambdaCCC.Monomorphize:*: -v0
    
    real	0m6.098s
    user	0m5.968s
    sys	0m0.245s
    let f = \ ds -> abst (repr ds) in let f0 = \ ds -> let (a1,a'1) = repr (repr ds) in abst (repr (f a1) + repr (f a'1)) in let f1 = \ ds -> let (a1,a'1) = repr (repr ds) in abst (repr (f0 a1) + repr (f0 a'1)) in let f2 = \ eta -> let a = repr eta in abst (a * a) in let f3 = \ eta -> abst (let (a1,a'1) = repr (repr eta) in abst (f2 a1,f2 a'1)) in let f4 = \ eta -> abst (let (a1,a'1) = repr (repr eta) in abst (f3 a1,f3 a'1)) in \ x -> let (a1,a'1) = repr (let (a1,a'1) = repr (repr x) in abst (f4 a1,f4 a'1)) in repr (f1 a1) + repr (f1 a'1)
    Wrote out/sumSquare-t3.pdf
    Wrote out/sumSquare-t3.v.txt
    

The .v.txt file is Verilog code. Additionally the PDF will be displayed if the display code figures out how to on your system.

There are many other examples in test/TreeTest.hs. At any time, all examples but one are commented out.

About

Convert lambda expressions to CCC combinators

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages