See our paper here
MoNuSeg dataset
Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology.
BCData
Huang, Z., Ding, Y., Song, G., Wang, L., Chen, J.: BCData: A Large-Scale Dataset and Benchmark for Cell Detection and Counting.
Arrange your MoNuSeg dataset:
data
-training
---Annotations
----1.png
----2.png
.......
---Tissue Images
----1.png
----2.png
.......
-Testing
----1.png
----2.png
.......
We provide several self-supervised learning methods.
python main_monuseg.py --mode 'train_base' #Similarity Measure
python main_monuseg.py --mode 'train_contrastive' #Basic Contrastive learning
python main_monuseg.py --mode 'train_random_rotate' #Predicting rotate
python main_monuseg.py --mode 'train_simsiam' #Simsiam
python main_monuseg.py --mode 'train_mean_value' #Predicting average pixel
Checkpoint of our trained self-supervised network is provided:
Checkpoint trained by train_base
Following the self-supervised training, we can then obtain the pseudo masks using the pre-trained model.
python main_monuseg.py --mode 'generate_label' --model 'model_path'
demo of the PSM and its pseudo label after clustering
python main_monuseg.py --mode 'train_second_stage' # train a network to get the point prediction
python main_monuseg.py --mode 'generate_voronoi' --model 'model_path' $ get voronoi labels
python main_monuseg.py --mode 'train_final_stage'
python main_monuseg.py --mode 'test' --model 'model_path'
@InProceedings{psm,
author="Chen, Pingyi
and Zhu, Chenglu
and Shui, Zhongyi
and Cai, Jiatong
and Zheng, Sunyi
and Zhang, Shichuan
and Yang, Lin",
title="Exploring Unsupervised Cell Recognition with Prior Self-activation Maps",
booktitle="Medical Image Computing and Computer Assisted Intervention -- MICCAI 2023",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="559--568"
}