Skip to content

Commit

Permalink
Merge https://github.com/cqfn/aibolit into fix_multiple_while
Browse files Browse the repository at this point in the history
  • Loading branch information
lukyanoffpashok committed Jul 9, 2020
2 parents e7e6f6d + 50cfa0a commit be5b7bf
Show file tree
Hide file tree
Showing 185 changed files with 1,619 additions and 322 deletions.
51 changes: 25 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
<img src="/logo.svg" height="92px"/>

[![PyPi version](https://img.shields.io/pypi/v/aibolit.svg)](https://pypi.org/project/aibolit/)
[![Build Status](https://travis-ci.org/yegor256/aibolit.svg)](https://travis-ci.org/yegor256/aibolit)
[![Build status](https://ci.appveyor.com/api/projects/status/1k7q7eumnhia0e3a?svg=true)](https://ci.appveyor.com/project/yegor256/aibolit)
[![Hits-of-Code](https://hitsofcode.com/github/yegor256/aibolit)](https://hitsofcode.com/view/github/yegor256/aibolit)
[![Test Coverage](https://img.shields.io/codecov/c/github/yegor256/aibolit.svg)](https://codecov.io/github/yegor256/aibolit?branch=master)
[![Maintainability](https://api.codeclimate.com/v1/badges/e90e80a143a9457ee3af/maintainability)](https://codeclimate.com/github/yegor256/aibolit/maintainability)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/yegor256/aibolit/blob/master/LICENSE.txt)
[![Build Status](https://travis-ci.org/cqfn/aibolit.svg)](https://travis-ci.org/cqfn/aibolit)
[![Build status](https://ci.appveyor.com/api/projects/status/gr3eqxq5pr87kpwg?svg=true)](https://ci.appveyor.com/project/yegor256/aibolit)
[![Hits-of-Code](https://hitsofcode.com/github/cqfn/aibolit)](https://hitsofcode.com/view/github/cqfn/aibolit)
[![Test Coverage](https://img.shields.io/codecov/c/github/cqfn/aibolit.svg)](https://codecov.io/github/cqfn/aibolit?branch=master)
[![Maintainability](https://api.codeclimate.com/v1/badges/fd7e32d8472b4d5e8ecb/maintainability)](https://codeclimate.com/github/cqfn/aibolit/maintainability)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/cqfn/aibolit/blob/master/LICENSE.txt)

First, you install it (you must have [Python 3.7.7](https://www.python.org/downloads/)
and [Pip](https://pip.pypa.io/en/stable/installing/) installed):
Expand All @@ -15,8 +15,6 @@ and [Pip](https://pip.pypa.io/en/stable/installing/) installed):
$ pip3 install aibolit
```

### Recommend command

To analyze your Java sources, located at `src/java` (for example), run:

```bash
Expand All @@ -34,11 +32,11 @@ Also, you can set a folder with Java files:
$ aibolit recommend --folder src/java
```

It will run recommendation function for the model (model is located in [aibolit/binary_files/model.pkl](https://github.com/yegor256/aibolit/blob/master/aibolit/binary_files/model.pkl).
The model finds a pattern which contribution is the largest to the Cyclomatic Complexity.
If anything is found, you will see all recommendations for the mentioned patterns.
You can see the list of all patterns in [Patterns.md](https://github.com/yegor256/aibolit/blob/master/PATTERNS.md).
The output of recommendation will be redirected to the stdout.
It will run recommendation function for the model (model is located in [aibolit/binary_files/model.pkl](https://github.com/cqfn/aibolit/blob/master/aibolit/binary_files/model.pkl).
The model finds a pattern which contribution is the largest to the Cyclomatic Complexity.
If anything is found, you will see all recommendations for the mentioned patterns.
You can see the list of all patterns in [Patterns.md](https://github.com/cqfn/aibolit/blob/master/PATTERNS.md).
The output of recommendation will be redirected to the stdout.
If the program has the `0` exit code, it means that all analyzed files do not have any issues.
If the program has the `1` exit code, it means that at least 1 analyzed file has an issue.
If the program has the `2` exit code, it means that program crash occurred.
Expand Down Expand Up @@ -73,7 +71,7 @@ Show all patterns
/mnt/d/src/java/Configuration.java[3261]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3727]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3956]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/ErrorExample.java: error when calculating patterns: Can't count P1 metric:
/mnt/d/src/java/ErrorExample.java: error when calculating patterns: Can't count P1 metric:
Total score: 127.67642529949538
```

Expand Down Expand Up @@ -106,7 +104,7 @@ Show all patterns
/mnt/d/src/java/Configuration.java[3844]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[3848]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[3956]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/ErrorExample.java: error when calculating patterns: Can't count P1 metric:
/mnt/d/src/java/ErrorExample.java: error when calculating patterns: Can't count P1 metric:
/mnt/d/src/java/MavenSlice.java: your code is perfect in aibolit's opinion
Total score: 127.67642529949538
```
Expand Down Expand Up @@ -172,8 +170,8 @@ You can also choose xml format. It will have the same format as `text` mode, but
</report>

```
The score is the relative importance of the pattern (there is no range for it).
The larger score is, the most important pattern is.
The score is the relative importance of the pattern (there is no range for it).
The larger score is, the most important pattern is.
E.g., if you have several patterns, first you need to fix the pattern with the score 5.45:

```
Expand Down Expand Up @@ -219,37 +217,38 @@ You can get full report with `--full` command, then all patterns will be include
$ aibolit recommend --folder src/java --full
```

You can exclude folder with `--exclude` command. The last parameter is the folder to exclude,
You can exclude folder with `--exclude` command. The last parameter is the folder to exclude,
the rest of them are glob patterns.
```bash
$ aibolit recommend --folder src/java --exclude=**/*Test*.java --exclude=**/*Impl*.java --exclude=/mnt/d/src/java/tests
```

If you need help, run
If you need help, run

```bash
$ aibolit recommend --help
```

### Train command
## How to retrain it?

`Train` command does the following:

- Calculates patterns and metrics
- Creates a dataset
- Trains model and save it
- Trains model and save it

Train works only with cloned git repository.
1. Clone aibolit repository
1. Clone aibolit repository
2. Go to `cloned_aibolit_path`
3. Run `pip install .`
4. Set env variable `export HOME_AIBOLIT=cloned_aibolit_path` (example for Linux).
5. If you need to set up own directory where model will be saved, set up also `SAVE_MODEL_FOLDER` environment variable.
Otherwise model will be saved into `cloned_aibolit_path/aibolit/binary_files/model.pkl`
6. If you need to set up own folder with Java files, use `--java_folder parameter`, the default value will be `scripts/target/01` of aibolit cloned repo
7. You need to install Java 13 and Maven

Or you can use our docker image (link will be soon here)

Run train pipeline:

```bash
Expand Down Expand Up @@ -299,5 +298,5 @@ Using Docker recommendation pipeline
$ docker run --rm -it \
-v <absolute_path_to_folder_with_classes>:/in \
-v <absolute_path_to_out_dir>:/out \
yegor256/aibolit-image
cqfn/aibolit-image
```
99 changes: 92 additions & 7 deletions aibolit/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,13 @@
import sys
import time
import traceback
from collections import defaultdict
from os import scandir
from pathlib import Path
from sys import stdout
from typing import List
from typing import List, Any, Dict, Tuple

import javalang
import numpy as np # type: ignore
import requests
from lxml import etree # type: ignore
Expand All @@ -45,7 +48,6 @@
from aibolit import __version__
from aibolit.config import Config
from aibolit.ml_pipeline.ml_pipeline import train_process, collect_dataset
from aibolit.model.model import TwoFoldRankingModel, Dataset # type: ignore # noqa: F401

dir_path = os.path.dirname(os.path.realpath(__file__))

Expand Down Expand Up @@ -159,6 +161,90 @@ def __count_value(value_dict, input_params, code_lines_dict, java_file: str, is_
)


def flatten(l):
return [item for sublist in l for item in sublist]


def add_pattern_if_ignored(
dct: Dict[str, Any],
pattern_item: Dict[Any, Any],
results_list: List[Any]) -> None:
""" If pattern code is not ignored, add it to the result list
:param dct: dict, where key is pattern, value is list of lines range to ignore
:param pattern_item: pattern dict which was get after `inference` function
:param results_list: result list to add
"""
ignored_lines = dct.get(pattern_item['pattern_code'])
if ignored_lines:
for place in ignored_lines:
# get lines range of ignored code
start_line_to_ignore = place[0]
end_line_to_ignore = place[1]
new_code_lines = []
for line in pattern_item['code_lines']:
if (line >= start_line_to_ignore) and (line <= end_line_to_ignore):
continue
else:
new_code_lines.append(line)
pattern_item['code_lines'] = new_code_lines
if len(pattern_item['code_lines']) > 0:
results_list.append(pattern_item)
else:
results_list.append(pattern_item)


def find_annotation_by_node_type(
tree: javalang.tree.CompilationUnit,
node_type) -> Dict[Any, Any]:
"""Search nodes with annotations.
:param tree: javalang.tree
:param node_type: Node type of javalang.tree
:return
dict with annotations, where key is node, value is list of string annotations;
"""
annonations = defaultdict(list)
for _, node in tree.filter(node_type):
if node.annotations:
for a in node.annotations:
if hasattr(a.element, 'value'):
if 'aibolit' in a.element.value:
annonations[node].append(
a.element.value.split('.')[1].rstrip('\"')
)
elif hasattr(a.element, 'values'):
for j in a.element.values:
if 'aibolit' in j.value:
annonations[node].append(
j.value.split('.')[1].rstrip('\"')
)
return annonations


def find_start_and_end_lines(node) -> Tuple[int, int]:
max_line = node.position.line

def traverse(node):
if hasattr(node, 'children'):
for child in node.children:
if isinstance(child, list) and (len(child) > 0):
for item in child:
traverse(item)
else:
if hasattr(child, '_position'):
nonlocal max_line
if child._position.line > max_line:
max_line = child._position.line
return
else:
return

traverse(node)
return node.position.line, max_line


def calculate_patterns_and_metrics(file, args):
code_lines_dict = input_params = {} # type: ignore
error_string = None
Expand Down Expand Up @@ -586,12 +672,11 @@ def handle_exclude_command_line(args):


def format_converter_for_pattern(results, sorted_by=None):
"""Reformat data where data are sorted by patterns importance
"""
Reformat data where data are sorted by patterns importance
(it is already sorted in the input).
Then lines are sorted in ascending order."""

def flatten(l):
return [item for sublist in l for item in sublist]
Then lines are sorted in ascending order.
"""

for file in results:
items = file.get('results')
Expand Down
7 changes: 7 additions & 0 deletions aibolit/ast_framework/ast.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,8 @@

MemberReferenceParams = namedtuple('MemberReferenceParams', ('object_name', 'member_name', 'unary_operator'))

BinaryOperationParams = namedtuple('BinaryOperationParams', ('operation', 'left_side', 'right_side'))


class AST:
_NODE_SKIPED = -1
Expand Down Expand Up @@ -179,6 +181,11 @@ def get_member_reference_params(self, member_reference_node: int) -> MemberRefer

return member_reference_params

def get_binary_operation_params(self, binary_operation_node: int) -> BinaryOperationParams:
assert(self.get_type(binary_operation_node) == ASTNodeType.BINARY_OPERATION)
operation_node, left_side_node, right_side_node = self.tree.succ[binary_operation_node]
return BinaryOperationParams(self.get_attr(operation_node, 'string'), left_side_node, right_side_node)

@staticmethod
def _build_from_javalang(tree: DiGraph, javalang_node: Node) -> int:
node_index = len(tree) + 1
Expand Down
Loading

0 comments on commit be5b7bf

Please sign in to comment.