Input latitude and longitude values or an sf/sfc
POINT object and get
back the time zone in which they exist. Two methods are implemented. One
is very fast and uses Rcpp in conjunction with source data from
(https://github.com/darkskyapp/tz-lookup-oss/). However, speed comes
at the cost of accuracy - near time zone borders away from populated
centres there is a chance that it will return the incorrect time zone.
The other method is slower but more accurate - it uses the sf package to intersect points with a detailed map of time zones from here.
lutz also contains several utility functions for helping to understand and visualize time zones, such as listing of world time zones,including information about daylight savings times and their offsets from UTC. You can also plot a time zone to visualize the UTC offset over a year and when daylight savings times are in effect.
You can install lutz from CRAN with:
install.packages("lutz")
Or you can install the development version from github with:
# install.packages("devtools")
devtools::install_github("ateucher/lutz")
There are two functions in this package for looking up the time zones of
coordinates: tz_lookup()
which works with both sf/sfc
and
SpatialPoints
objects, and tz_lookup_coords
for looking up lat/long
pairs. Use the method
argument to choose the "fast"
or "accurate"
method.
library(lutz)
tz_lookup_coords(49.5, -123.5, method = "fast")
#> [1] "America/Vancouver"
tz_lookup_coords(49.5, -123.5, method = "accurate")
#> [1] "America/Vancouver"
tz_lookup_coords(lat = c(48.9, 38.5, 63.1, -25), lon = c(-123.5, -110.2, -95.0, 130))
#> [1] "America/Vancouver" "America/Denver" "America/Rankin_Inlet"
#> [4] "Australia/Darwin"
library(sf)
library(ggplot2) # this requires the devlopment version of ggplot2
# Create an sf object out of the included state.center dataset:
pts <- lapply(seq_along(state.center$x), function(i) {
st_point(c(state.center$x[i], state.center$y[i]))
})
state_centers_sf <- st_sf(st_sfc(pts))
# Use tz_lookup_sf to find the time zones
state_centers_sf$tz <- tz_lookup(state_centers_sf)
state_centers_sf$tz <- tz_lookup(state_centers_sf, method = "accurate")
ggplot() +
geom_sf(data = state_centers_sf, aes(colour = tz)) +
theme_minimal() +
coord_sf(datum = NA)
library(sp)
state_centers_sp <- as(state_centers_sf, "Spatial")
state_centers_sp$tz <- tz_lookup(state_centers_sp)
ggplot(cbind(as.data.frame(coordinates(state_centers_sp)), tz = state_centers_sp$tz),
aes(x = coords.x1, y = coords.x2, colour = tz)) +
geom_point() +
coord_fixed() +
theme_minimal()
Note that there are some regions in the world where a single point can
land in two different overlapping time zones. The "accurate"
method
includes
these,
however the method used in the "fast"
does not include overlapping
time zones (at least for
now).
We can compare the accuracy of both methods to the high-resolution time
zone map provided by
https://github.com/evansiroky/timezone-boundary-builder. This is the
map that is used by lutz
for the "accurate"
method, but in lutz
it
is simplified by about 80% to be small enough to fit in the package.
## Get the full time zone geojson from https://github.com/evansiroky/timezone-boundary-builder
download.file("https://github.com/evansiroky/timezone-boundary-builder/releases/download/2019a/timezones-with-oceans.geojson.zip",
destfile = "tz.zip")
unzip("tz.zip", exdir = "data-raw/dist/")
library(lutz)
library(sf)
library(purrr)
library(dplyr)
tz_full <- read_sf("data-raw/dist/combined-with-oceans.json")
# Create a data frame of 500000 lat/long pairs:
set.seed(1)
n <- 500000
ll <- data.frame(id = seq(n), lat = runif(n, -90, 90), lon = runif(n, -180, 180))
ll_sf <- st_as_sf(ll, coords = c("lon", "lat"), crs = 4326)
# Overlay those points with the full high-resolution time zone map:
ref_ll_tz <- sf::st_join(ll_sf, tz_full)
# Combine those that had overlapping time zones
ref_ll_tz <- ref_ll_tz %>%
st_set_geometry(NULL) %>%
group_by(id) %>%
summarize(tzid = paste(tzid, collapse = "; "))
# run tz_lookup with both `"fast"` and `"accurate"` methods and compare with
# the time zones looked up with the high-resolution map:
tests <- map_df(c("fast", "accurate"), ~ {
time <- system.time(test_ll_tz <- tz_lookup(ll_sf, method = .x, warn = FALSE))
comp <- ref_ll_tz$tzid == test_ll_tz
matches <- sum(comp, na.rm = TRUE)
mismatches <- sum(!comp, na.rm = TRUE)
list(
method = .x,
time = time["elapsed"],
matches = matches,
mismatches = mismatches,
accuracy = matches / (matches + mismatches),
ref_nas = sum(is.na(ref_ll_tz$tzid)),
fun_nas = sum(is.na(test_ll_tz))
)
})
knitr::kable(tests)
tz_plot("America/Vancouver")
# A Date object
tz_offset(Sys.Date(), "Africa/Algiers")
#> tz_name date_time zone is_dst utc_offset_h
#> 1 Africa/Algiers 2023-10-17 CET FALSE 1
# A Date-like character string
tz_offset("2017-03-01", tz = "Singapore")
#> tz_name date_time zone is_dst utc_offset_h
#> 1 Singapore 2017-03-01 +08 FALSE 8
# A POSIXct date-time object
tz_offset(Sys.time())
#> Warning: You supplied an object of class POSIXct that does not have a time zone
#> attribute, and did not specify one inthe 'tz' argument. Defaulting to current
#> (America/Vancouver).
#> tz_name date_time zone is_dst utc_offset_h
#> 1 America/Vancouver 2023-10-17 12:11:11 PDT TRUE -7
tz_list() %>%
head(20) %>%
knitr::kable()
tz_name | zone | is_dst | utc_offset_h | |
---|---|---|---|---|
1 | Africa/Abidjan | GMT | FALSE | 0 |
2 | Africa/Accra | GMT | FALSE | 0 |
3 | Africa/Addis_Ababa | EAT | FALSE | 3 |
4 | Africa/Algiers | CET | FALSE | 1 |
5 | Africa/Asmara | EAT | FALSE | 3 |
6 | Africa/Asmera | EAT | FALSE | 3 |
7 | Africa/Bamako | GMT | FALSE | 0 |
8 | Africa/Bangui | WAT | FALSE | 1 |
9 | Africa/Banjul | GMT | FALSE | 0 |
10 | Africa/Bissau | GMT | FALSE | 0 |
11 | Africa/Blantyre | CAT | FALSE | 2 |
12 | Africa/Brazzaville | WAT | FALSE | 1 |
13 | Africa/Bujumbura | CAT | FALSE | 2 |
14 | Africa/Cairo | EET | FALSE | 2 |
16 | Africa/Cairo | EEST | TRUE | 3 |
17 | Africa/Casablanca | +01 | TRUE | 1 |
18 | Africa/Casablanca | +00 | FALSE | 0 |
19 | Africa/Ceuta | CET | FALSE | 1 |
20 | Africa/Ceuta | CEST | TRUE | 2 |
21 | Africa/Conakry | GMT | FALSE | 0 |