-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute.go
1061 lines (974 loc) · 27.6 KB
/
compute.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: Unlicense OR MIT
package gpu
import (
"encoding/binary"
"errors"
"fmt"
"image"
"image/color"
"math/bits"
"time"
"unsafe"
"github.com/cybriq/giocore/f32"
"github.com/cybriq/giocore/gpu/internal/driver"
"github.com/cybriq/giocore/internal/byteslice"
"github.com/cybriq/giocore/internal/f32color"
"github.com/cybriq/giocore/internal/ops"
"github.com/cybriq/giocore/internal/scene"
"github.com/cybriq/giocore/op"
layout "github.com/cybriq/giocore/utils"
)
type compute struct {
ctx driver.Device
enc encoder
drawOps drawOps
texOps []textureOp
cache *resourceCache
maxTextureDim int
programs struct {
elements driver.Program
tileAlloc driver.Program
pathCoarse driver.Program
backdrop driver.Program
binning driver.Program
coarse driver.Program
kernel4 driver.Program
}
buffers struct {
config driver.Buffer
scene sizedBuffer
state sizedBuffer
memory sizedBuffer
}
output struct {
size image.Point
// image is the output texture. Note that it is in RGBA format,
// but contains data in sRGB. See blitOutput for more detail.
image driver.Texture
blitProg driver.Program
}
// images contains ImageOp images packed into a texture atlas.
images struct {
packer packer
// positions maps imageOpData.handles to positions inside tex.
positions map[interface{}]image.Point
tex driver.Texture
}
// materials contains the pre-processed materials (transformed images for
// now, gradients etc. later) packed in a texture atlas. The atlas is used
// as source in kernel4.
materials struct {
// offsets maps texture ops to the offsets to put in their FillImage commands.
offsets map[textureKey]image.Point
prog driver.Program
layout driver.InputLayout
packer packer
tex driver.Texture
fbo driver.Framebuffer
quads []materialVertex
buffer sizedBuffer
}
timers struct {
profile string
t *timers
materials *timer
elements *timer
tileAlloc *timer
pathCoarse *timer
backdropBinning *timer
coarse *timer
kernel4 *timer
blit *timer
}
// The following fields hold scratch space to avoid garbage.
zeroSlice []byte
memHeader *memoryHeader
conf *config
}
// materialVertex describes a vertex of a quad used to render a transformed
// material.
type materialVertex struct {
posX, posY float32
u, v float32
}
// textureKey identifies textureOp.
type textureKey struct {
handle interface{}
transform f32.Affine2D
}
// textureOp represents an imageOp that requires texture space.
type textureOp struct {
// sceneIdx is the index in the scene that contains the fill image command
// that corresponds to the operation.
sceneIdx int
key textureKey
img imageOpData
// pos is the position of the untransformed image in the images texture.
pos image.Point
}
type encoder struct {
scene []scene.Command
npath int
npathseg int
ntrans int
}
type encodeState struct {
trans f32.Affine2D
clip f32.Rectangle
}
type sizedBuffer struct {
size int
buffer driver.Buffer
}
// config matches Config in setup.h
type config struct {
n_elements uint32 // paths
n_pathseg uint32
width_in_tiles uint32
height_in_tiles uint32
tile_alloc memAlloc
bin_alloc memAlloc
ptcl_alloc memAlloc
pathseg_alloc memAlloc
anno_alloc memAlloc
trans_alloc memAlloc
}
// memAlloc matches Alloc in mem.h
type memAlloc struct {
offset uint32
//size uint32
}
// memoryHeader matches the header of Memory in mem.h.
type memoryHeader struct {
mem_offset uint32
mem_error uint32
}
// GPU structure sizes and constants.
const (
tileWidthPx = 32
tileHeightPx = 32
ptclInitialAlloc = 1024
kernel4OutputUnit = 2
kernel4AtlasUnit = 3
pathSize = 12
binSize = 8
pathsegSize = 52
annoSize = 32
transSize = 24
stateSize = 60
stateStride = 4 + 2*stateSize
)
// mem.h constants.
const (
memNoError = 0 // NO_ERROR
memMallocFailed = 1 // ERR_MALLOC_FAILED
)
func newCompute(ctx driver.Device) (*compute, error) {
maxDim := ctx.Caps().MaxTextureSize
// Large atlas textures cause artifacts due to precision loss in
// shaders.
if cap := 8192; maxDim > cap {
maxDim = cap
}
g := &compute{
ctx: ctx,
cache: newResourceCache(),
maxTextureDim: maxDim,
conf: new(config),
memHeader: new(memoryHeader),
}
blitProg, err := ctx.NewProgram(shader_copy_vert, shader_copy_frag)
if err != nil {
g.Release()
return nil, err
}
g.output.blitProg = blitProg
materialProg, err := ctx.NewProgram(shader_material_vert, shader_material_frag)
if err != nil {
g.Release()
return nil, err
}
g.materials.prog = materialProg
progLayout, err := ctx.NewInputLayout(shader_material_vert, []driver.InputDesc{
{Type: driver.DataTypeFloat, Size: 2, Offset: 0},
{Type: driver.DataTypeFloat, Size: 2, Offset: 4 * 2},
})
if err != nil {
g.Release()
return nil, err
}
g.materials.layout = progLayout
g.drawOps.pathCache = newOpCache()
g.drawOps.compute = true
buf, err := ctx.NewBuffer(driver.BufferBindingShaderStorage, int(unsafe.Sizeof(config{})))
if err != nil {
g.Release()
return nil, err
}
g.buffers.config = buf
shaders := []struct {
prog *driver.Program
src driver.ShaderSources
}{
{&g.programs.elements, shader_elements_comp},
{&g.programs.tileAlloc, shader_tile_alloc_comp},
{&g.programs.pathCoarse, shader_path_coarse_comp},
{&g.programs.backdrop, shader_backdrop_comp},
{&g.programs.binning, shader_binning_comp},
{&g.programs.coarse, shader_coarse_comp},
{&g.programs.kernel4, shader_kernel4_comp},
}
for _, shader := range shaders {
p, err := ctx.NewComputeProgram(shader.src)
if err != nil {
g.Release()
return nil, err
}
*shader.prog = p
}
return g, nil
}
func (g *compute) Collect(viewport image.Point, ops *op.Ops) {
g.drawOps.reset(g.cache, viewport)
g.drawOps.collect(g.ctx, g.cache, ops, viewport)
for _, img := range g.drawOps.allImageOps {
expandPathOp(img.path, img.clip)
}
g.encode(viewport)
}
func (g *compute) Clear(col color.NRGBA) {
g.drawOps.clear = true
g.drawOps.clearColor = f32color.LinearFromSRGB(col)
}
func (g *compute) Frame() error {
viewport := g.drawOps.viewport
tileDims := image.Point{
X: (viewport.X + tileWidthPx - 1) / tileWidthPx,
Y: (viewport.Y + tileHeightPx - 1) / tileHeightPx,
}
defFBO := g.ctx.BeginFrame(g.drawOps.clear, viewport)
defer g.ctx.EndFrame()
if g.drawOps.profile && g.timers.t == nil && g.ctx.Caps().Features.Has(driver.FeatureTimers) {
t := &g.timers
t.t = newTimers(g.ctx)
t.materials = g.timers.t.newTimer()
t.elements = g.timers.t.newTimer()
t.tileAlloc = g.timers.t.newTimer()
t.pathCoarse = g.timers.t.newTimer()
t.backdropBinning = g.timers.t.newTimer()
t.coarse = g.timers.t.newTimer()
t.kernel4 = g.timers.t.newTimer()
t.blit = g.timers.t.newTimer()
}
mat := g.timers.materials
mat.begin()
if err := g.uploadImages(); err != nil {
return err
}
if err := g.renderMaterials(); err != nil {
return err
}
mat.end()
if err := g.render(tileDims); err != nil {
return err
}
g.ctx.BindFramebuffer(defFBO)
g.blitOutput(viewport)
g.cache.frame()
g.drawOps.pathCache.frame()
t := &g.timers
if g.drawOps.profile && t.t.ready() {
mat := t.materials.Elapsed
et, tat, pct, bbt := t.elements.Elapsed, t.tileAlloc.Elapsed, t.pathCoarse.Elapsed, t.backdropBinning.Elapsed
ct, k4t := t.coarse.Elapsed, t.kernel4.Elapsed
blit := t.blit.Elapsed
ft := mat + et + tat + pct + bbt + ct + k4t + blit
q := 100 * time.Microsecond
ft = ft.Round(q)
mat = mat.Round(q)
et, tat, pct, bbt = et.Round(q), tat.Round(q), pct.Round(q), bbt.Round(q)
ct, k4t = ct.Round(q), k4t.Round(q)
blit = blit.Round(q)
t.profile = fmt.Sprintf("ft:%7s mat: %7s et:%7s tat:%7s pct:%7s bbt:%7s ct:%7s k4t:%7s blit:%7s", ft, mat, et, tat, pct, bbt, ct, k4t, blit)
}
g.drawOps.clear = false
return nil
}
func (g *compute) Profile() string {
return g.timers.profile
}
// blitOutput copies the compute render output to the output FBO. We need to
// copy because compute shaders can only write to textures, not FBOs. Compute
// shader can only write to RGBA textures, but since we actually render in sRGB
// format we can't use glBlitFramebuffer, because it does sRGB conversion.
func (g *compute) blitOutput(viewport image.Point) {
t := g.timers.blit
t.begin()
if !g.drawOps.clear {
g.ctx.BlendFunc(driver.BlendFactorOne, driver.BlendFactorOneMinusSrcAlpha)
g.ctx.SetBlend(true)
defer g.ctx.SetBlend(false)
}
g.ctx.Viewport(0, 0, viewport.X, viewport.Y)
g.ctx.BindTexture(0, g.output.image)
g.ctx.BindProgram(g.output.blitProg)
g.ctx.DrawArrays(driver.DrawModeTriangleStrip, 0, 4)
t.end()
}
func (g *compute) encode(viewport image.Point) {
g.texOps = g.texOps[:0]
g.enc.reset()
// Flip Y-axis.
flipY := f32.Affine2D{}.Scale(f32.Pt(0, 0), f32.Pt(1, -1)).Offset(f32.Pt(0, float32(viewport.Y)))
g.enc.transform(flipY)
if g.drawOps.clear {
g.enc.rect(f32.Rectangle{Max: layout.FPt(viewport)})
g.enc.fillColor(f32color.NRGBAToRGBA(g.drawOps.clearColor.SRGB()))
}
g.encodeOps(flipY, viewport, g.drawOps.allImageOps)
}
func (g *compute) renderMaterials() error {
m := &g.materials
m.quads = m.quads[:0]
resize := false
reclaimed := false
restart:
for {
for _, op := range g.texOps {
if off, exists := m.offsets[op.key]; exists {
g.enc.setFillImageOffset(op.sceneIdx, off)
continue
}
quad, bounds := g.materialQuad(op.key.transform, op.img, op.pos)
// A material is clipped to avoid drawing outside its bounds inside the atlas. However,
// imprecision in the clipping may cause a single pixel overflow. Be safe.
size := bounds.Size().Add(image.Pt(1, 1))
place, fits := m.packer.tryAdd(size)
if !fits {
m.offsets = nil
m.quads = m.quads[:0]
m.packer.clear()
if !reclaimed {
// Some images may no longer be in use, try again
// after clearing existing maps.
reclaimed = true
} else {
m.packer.maxDim += 256
resize = true
if m.packer.maxDim > g.maxTextureDim {
return errors.New("compute: no space left in material atlas")
}
}
m.packer.newPage()
continue restart
}
// Position quad to match place.
offset := place.Pos.Sub(bounds.Min)
offsetf := layout.FPt(offset)
for i := range quad {
quad[i].posX += offsetf.X
quad[i].posY += offsetf.Y
}
// Draw quad as two triangles.
m.quads = append(m.quads, quad[0], quad[1], quad[3], quad[3], quad[1], quad[2])
if m.offsets == nil {
m.offsets = make(map[textureKey]image.Point)
}
m.offsets[op.key] = offset
g.enc.setFillImageOffset(op.sceneIdx, offset)
}
break
}
if len(m.quads) == 0 {
return nil
}
texSize := m.packer.maxDim
if resize {
if m.fbo != nil {
m.fbo.Release()
m.fbo = nil
}
if m.tex != nil {
m.tex.Release()
m.tex = nil
}
handle, err := g.ctx.NewTexture(driver.TextureFormatRGBA8, texSize, texSize,
driver.FilterNearest, driver.FilterNearest,
driver.BufferBindingShaderStorage|driver.BufferBindingFramebuffer)
if err != nil {
return fmt.Errorf("compute: failed to create material atlas: %v", err)
}
m.tex = handle
fbo, err := g.ctx.NewFramebuffer(handle, 0)
if err != nil {
return fmt.Errorf("compute: failed to create material framebuffer: %v", err)
}
m.fbo = fbo
}
// TODO: move to shaders.
// Transform to clip space: [-1, -1] - [1, 1].
clip := f32.Affine2D{}.Scale(f32.Pt(0, 0), f32.Pt(2/float32(texSize), 2/float32(texSize))).Offset(f32.Pt(-1, -1))
for i, v := range m.quads {
p := clip.Transform(f32.Pt(v.posX, v.posY))
m.quads[i].posX = p.X
m.quads[i].posY = p.Y
}
vertexData := byteslice.Slice(m.quads)
n := pow2Ceil(len(vertexData))
m.buffer.ensureCapacity(g.ctx, driver.BufferBindingVertices, n)
m.buffer.buffer.Upload(vertexData)
g.ctx.BindTexture(0, g.images.tex)
g.ctx.BindFramebuffer(m.fbo)
g.ctx.Viewport(0, 0, texSize, texSize)
if reclaimed {
g.ctx.Clear(0, 0, 0, 0)
}
g.ctx.BindProgram(m.prog)
g.ctx.BindVertexBuffer(m.buffer.buffer, int(unsafe.Sizeof(m.quads[0])), 0)
g.ctx.BindInputLayout(m.layout)
g.ctx.DrawArrays(driver.DrawModeTriangles, 0, len(m.quads))
return nil
}
func (g *compute) uploadImages() error {
// padding is the number of pixels added to the right and below
// images, to avoid atlas filtering artifacts.
const padding = 1
a := &g.images
var uploads map[interface{}]*image.RGBA
resize := false
reclaimed := false
restart:
for {
for i, op := range g.texOps {
if pos, exists := a.positions[op.img.handle]; exists {
g.texOps[i].pos = pos
continue
}
size := op.img.src.Bounds().Size().Add(image.Pt(padding, padding))
place, fits := a.packer.tryAdd(size)
if !fits {
a.positions = nil
uploads = nil
a.packer.clear()
if !reclaimed {
// Some images may no longer be in use, try again
// after clearing existing maps.
reclaimed = true
} else {
a.packer.maxDim += 256
resize = true
if a.packer.maxDim > g.maxTextureDim {
return errors.New("compute: no space left in image atlas")
}
}
a.packer.newPage()
continue restart
}
if a.positions == nil {
a.positions = make(map[interface{}]image.Point)
}
a.positions[op.img.handle] = place.Pos
g.texOps[i].pos = place.Pos
if uploads == nil {
uploads = make(map[interface{}]*image.RGBA)
}
uploads[op.img.handle] = op.img.src
}
break
}
if len(uploads) == 0 {
return nil
}
if resize {
if a.tex != nil {
a.tex.Release()
a.tex = nil
}
sz := a.packer.maxDim
handle, err := g.ctx.NewTexture(driver.TextureFormatSRGB, sz, sz, driver.FilterLinear, driver.FilterLinear, driver.BufferBindingTexture)
if err != nil {
return fmt.Errorf("compute: failed to create image atlas: %v", err)
}
a.tex = handle
}
for h, img := range uploads {
pos, ok := a.positions[h]
if !ok {
panic("compute: internal error: image not placed")
}
size := img.Bounds().Size()
driver.UploadImage(a.tex, pos, img)
rightPadding := image.Pt(padding, size.Y)
a.tex.Upload(image.Pt(pos.X+size.X, pos.Y), rightPadding, g.zeros(rightPadding.X*rightPadding.Y*4))
bottomPadding := image.Pt(size.X, padding)
a.tex.Upload(image.Pt(pos.X, pos.Y+size.Y), bottomPadding, g.zeros(bottomPadding.X*bottomPadding.Y*4))
}
return nil
}
func pow2Ceil(v int) int {
exp := bits.Len(uint(v))
if bits.OnesCount(uint(v)) == 1 {
exp--
}
return 1 << exp
}
// materialQuad constructs a quad that represents the transformed image. It returns the quad
// and its bounds.
func (g *compute) materialQuad(M f32.Affine2D, img imageOpData, uvPos image.Point) ([4]materialVertex, image.Rectangle) {
imgSize := layout.FPt(img.src.Bounds().Size())
sx, hx, ox, hy, sy, oy := M.Elems()
transOff := f32.Pt(ox, oy)
// The 4 corners of the image rectangle transformed by M, excluding its offset, are:
//
// q0: M * (0, 0) q3: M * (w, 0)
// q1: M * (0, h) q2: M * (w, h)
//
// Note that q0 = M*0 = 0, q2 = q1 + q3.
q0 := f32.Pt(0, 0)
q1 := f32.Pt(hx*imgSize.Y, sy*imgSize.Y)
q3 := f32.Pt(sx*imgSize.X, hy*imgSize.X)
q2 := q1.Add(q3)
q0 = q0.Add(transOff)
q1 = q1.Add(transOff)
q2 = q2.Add(transOff)
q3 = q3.Add(transOff)
boundsf := f32.Rectangle{
Min: min(min(q0, q1), min(q2, q3)),
Max: max(max(q0, q1), max(q2, q3)),
}
bounds := boundRectF(boundsf)
uvPosf := layout.FPt(uvPos)
atlasScale := 1 / float32(g.images.packer.maxDim)
uvBounds := f32.Rectangle{
Min: uvPosf.Mul(atlasScale),
Max: uvPosf.Add(imgSize).Mul(atlasScale),
}
quad := [4]materialVertex{
{posX: q0.X, posY: q0.Y, u: uvBounds.Min.X, v: uvBounds.Min.Y},
{posX: q1.X, posY: q1.Y, u: uvBounds.Min.X, v: uvBounds.Max.Y},
{posX: q2.X, posY: q2.Y, u: uvBounds.Max.X, v: uvBounds.Max.Y},
{posX: q3.X, posY: q3.Y, u: uvBounds.Max.X, v: uvBounds.Min.Y},
}
return quad, bounds
}
func max(p1, p2 f32.Point) f32.Point {
p := p1
if p2.X > p.X {
p.X = p2.X
}
if p2.Y > p.Y {
p.Y = p2.Y
}
return p
}
func min(p1, p2 f32.Point) f32.Point {
p := p1
if p2.X < p.X {
p.X = p2.X
}
if p2.Y < p.Y {
p.Y = p2.Y
}
return p
}
func (g *compute) encodeOps(trans f32.Affine2D, viewport image.Point, ops []imageOp) {
for _, op := range ops {
bounds := layout.FRect(op.clip)
// clip is the union of all drawing affected by the clipping
// operation. TODO: tighten.
clip := f32.Rect(0, 0, float32(viewport.X), float32(viewport.Y))
nclips := g.encodeClipStack(clip, bounds, op.path, false)
m := op.material
switch m.material {
case materialTexture:
t := trans.Mul(m.trans)
g.texOps = append(g.texOps, textureOp{
sceneIdx: len(g.enc.scene),
img: m.data,
key: textureKey{
transform: t,
handle: m.data.handle,
},
})
// Add fill command, its offset is resolved and filled in renderMaterials.
g.enc.fillImage(0)
case materialColor:
g.enc.fillColor(f32color.NRGBAToRGBA(op.material.color.SRGB()))
case materialLinearGradient:
// TODO: implement.
g.enc.fillColor(f32color.NRGBAToRGBA(op.material.color1.SRGB()))
default:
panic("not implemented")
}
if op.path != nil && op.path.path {
g.enc.fillMode(scene.FillModeNonzero)
g.enc.transform(op.path.trans.Invert())
}
// Pop the clip stack.
for i := 0; i < nclips; i++ {
g.enc.endClip(clip)
}
}
}
// encodeClips encodes a stack of clip paths and return the stack depth.
func (g *compute) encodeClipStack(clip, bounds f32.Rectangle, p *pathOp, begin bool) int {
nclips := 0
if p != nil && p.parent != nil {
nclips += g.encodeClipStack(clip, bounds, p.parent, true)
nclips += 1
}
isStroke := p.stroke.Width > 0
if p != nil && p.path {
if isStroke {
g.enc.fillMode(scene.FillModeStroke)
g.enc.lineWidth(p.stroke.Width)
}
pathData, _ := g.drawOps.pathCache.get(p.pathKey)
g.enc.transform(p.trans)
g.enc.append(pathData.computePath)
} else {
g.enc.rect(bounds)
}
if begin {
g.enc.beginClip(clip)
if isStroke {
g.enc.fillMode(scene.FillModeNonzero)
}
if p != nil && p.path {
g.enc.transform(p.trans.Invert())
}
}
return nclips
}
func encodePath(verts []byte) encoder {
var enc encoder
for len(verts) >= scene.CommandSize+4 {
cmd := ops.DecodeCommand(verts[4:])
enc.scene = append(enc.scene, cmd)
enc.npathseg++
verts = verts[scene.CommandSize+4:]
}
return enc
}
func (g *compute) render(tileDims image.Point) error {
const (
// wgSize is the largest and most common workgroup size.
wgSize = 128
// PARTITION_SIZE from elements.comp
partitionSize = 32 * 4
)
widthInBins := (tileDims.X + 15) / 16
heightInBins := (tileDims.Y + 7) / 8
if widthInBins*heightInBins > wgSize {
return fmt.Errorf("gpu: output too large (%dx%d)", tileDims.X*tileWidthPx, tileDims.Y*tileHeightPx)
}
// Pad scene with zeroes to avoid reading garbage in elements.comp.
scenePadding := partitionSize - len(g.enc.scene)%partitionSize
g.enc.scene = append(g.enc.scene, make([]scene.Command, scenePadding)...)
realloced := false
scene := byteslice.Slice(g.enc.scene)
if s := len(scene); s > g.buffers.scene.size {
realloced = true
paddedCap := s * 11 / 10
if err := g.buffers.scene.ensureCapacity(g.ctx, driver.BufferBindingShaderStorage, paddedCap); err != nil {
return err
}
}
g.buffers.scene.buffer.Upload(scene)
w, h := tileDims.X*tileWidthPx, tileDims.Y*tileHeightPx
if g.output.size.X != w || g.output.size.Y != h {
if err := g.resizeOutput(image.Pt(w, h)); err != nil {
return err
}
}
g.ctx.BindImageTexture(kernel4OutputUnit, g.output.image, driver.AccessWrite, driver.TextureFormatRGBA8)
if t := g.materials.tex; t != nil {
g.ctx.BindImageTexture(kernel4AtlasUnit, t, driver.AccessRead, driver.TextureFormatRGBA8)
}
// alloc is the number of allocated bytes for static buffers.
var alloc uint32
round := func(v, quantum int) int {
return (v + quantum - 1) &^ (quantum - 1)
}
malloc := func(size int) memAlloc {
size = round(size, 4)
offset := alloc
alloc += uint32(size)
return memAlloc{offset /*, uint32(size)*/}
}
*g.conf = config{
n_elements: uint32(g.enc.npath),
n_pathseg: uint32(g.enc.npathseg),
width_in_tiles: uint32(tileDims.X),
height_in_tiles: uint32(tileDims.Y),
tile_alloc: malloc(g.enc.npath * pathSize),
bin_alloc: malloc(round(g.enc.npath, wgSize) * binSize),
ptcl_alloc: malloc(tileDims.X * tileDims.Y * ptclInitialAlloc),
pathseg_alloc: malloc(g.enc.npathseg * pathsegSize),
anno_alloc: malloc(g.enc.npath * annoSize),
trans_alloc: malloc(g.enc.ntrans * transSize),
}
numPartitions := (g.enc.numElements() + 127) / 128
// clearSize is the atomic partition counter plus flag and 2 states per partition.
clearSize := 4 + numPartitions*stateStride
if clearSize > g.buffers.state.size {
realloced = true
paddedCap := clearSize * 11 / 10
if err := g.buffers.state.ensureCapacity(g.ctx, driver.BufferBindingShaderStorage, paddedCap); err != nil {
return err
}
}
g.buffers.config.Upload(byteslice.Struct(g.conf))
minSize := int(unsafe.Sizeof(memoryHeader{})) + int(alloc)
if minSize > g.buffers.memory.size {
realloced = true
// Add space for dynamic GPU allocations.
const sizeBump = 4 * 1024 * 1024
minSize += sizeBump
if err := g.buffers.memory.ensureCapacity(g.ctx, driver.BufferBindingShaderStorage, minSize); err != nil {
return err
}
}
for {
*g.memHeader = memoryHeader{
mem_offset: alloc,
}
g.buffers.memory.buffer.Upload(byteslice.Struct(g.memHeader))
g.buffers.state.buffer.Upload(g.zeros(clearSize))
if realloced {
realloced = false
g.bindBuffers()
}
t := &g.timers
g.ctx.MemoryBarrier()
t.elements.begin()
g.ctx.BindProgram(g.programs.elements)
g.ctx.DispatchCompute(numPartitions, 1, 1)
g.ctx.MemoryBarrier()
t.elements.end()
t.tileAlloc.begin()
g.ctx.BindProgram(g.programs.tileAlloc)
g.ctx.DispatchCompute((g.enc.npath+wgSize-1)/wgSize, 1, 1)
g.ctx.MemoryBarrier()
t.tileAlloc.end()
t.pathCoarse.begin()
g.ctx.BindProgram(g.programs.pathCoarse)
g.ctx.DispatchCompute((g.enc.npathseg+31)/32, 1, 1)
g.ctx.MemoryBarrier()
t.pathCoarse.end()
t.backdropBinning.begin()
g.ctx.BindProgram(g.programs.backdrop)
g.ctx.DispatchCompute((g.enc.npath+wgSize-1)/wgSize, 1, 1)
// No barrier needed between backdrop and binning.
g.ctx.BindProgram(g.programs.binning)
g.ctx.DispatchCompute((g.enc.npath+wgSize-1)/wgSize, 1, 1)
g.ctx.MemoryBarrier()
t.backdropBinning.end()
t.coarse.begin()
g.ctx.BindProgram(g.programs.coarse)
g.ctx.DispatchCompute(widthInBins, heightInBins, 1)
g.ctx.MemoryBarrier()
t.coarse.end()
t.kernel4.begin()
g.ctx.BindProgram(g.programs.kernel4)
g.ctx.DispatchCompute(tileDims.X, tileDims.Y, 1)
g.ctx.MemoryBarrier()
t.kernel4.end()
if err := g.buffers.memory.buffer.Download(byteslice.Struct(g.memHeader)); err != nil {
if err == driver.ErrContentLost {
continue
}
return err
}
switch errCode := g.memHeader.mem_error; errCode {
case memNoError:
return nil
case memMallocFailed:
// Resize memory and try again.
realloced = true
sz := g.buffers.memory.size * 15 / 10
if err := g.buffers.memory.ensureCapacity(g.ctx, driver.BufferBindingShaderStorage, sz); err != nil {
return err
}
continue
default:
return fmt.Errorf("compute: shader program failed with error %d", errCode)
}
}
}
// zeros returns a byte slice with size bytes of zeros.
func (g *compute) zeros(size int) []byte {
if cap(g.zeroSlice) < size {
g.zeroSlice = append(g.zeroSlice, make([]byte, size)...)
}
return g.zeroSlice[:size]
}
func (g *compute) resizeOutput(size image.Point) error {
if g.output.image != nil {
g.output.image.Release()
g.output.image = nil
}
img, err := g.ctx.NewTexture(driver.TextureFormatRGBA8, size.X, size.Y,
driver.FilterNearest,
driver.FilterNearest,
driver.BufferBindingShaderStorage|driver.BufferBindingTexture)
if err != nil {
return err
}
g.output.image = img
g.output.size = size
return nil
}
func (g *compute) Release() {
if g.drawOps.pathCache != nil {
g.drawOps.pathCache.release()
}
if g.cache != nil {
g.cache.release()
}
progs := []driver.Program{
g.programs.elements,
g.programs.tileAlloc,
g.programs.pathCoarse,
g.programs.backdrop,
g.programs.binning,
g.programs.coarse,
g.programs.kernel4,
}
if p := g.output.blitProg; p != nil {
p.Release()
}
for _, p := range progs {
if p != nil {
p.Release()
}
}
g.buffers.scene.release()
g.buffers.state.release()
g.buffers.memory.release()
if b := g.buffers.config; b != nil {
b.Release()
}
if g.output.image != nil {
g.output.image.Release()
}
if g.images.tex != nil {
g.images.tex.Release()
}
if g.materials.layout != nil {
g.materials.layout.Release()
}
if g.materials.prog != nil {
g.materials.prog.Release()
}
if g.materials.fbo != nil {
g.materials.fbo.Release()
}
if g.materials.tex != nil {
g.materials.tex.Release()
}
g.materials.buffer.release()
if g.timers.t != nil {
g.timers.t.release()
}
*g = compute{}
}
func (g *compute) bindBuffers() {
bindStorageBuffers(g.programs.elements, g.buffers.memory.buffer, g.buffers.config, g.buffers.scene.buffer, g.buffers.state.buffer)
bindStorageBuffers(g.programs.tileAlloc, g.buffers.memory.buffer, g.buffers.config)
bindStorageBuffers(g.programs.pathCoarse, g.buffers.memory.buffer, g.buffers.config)
bindStorageBuffers(g.programs.backdrop, g.buffers.memory.buffer, g.buffers.config)
bindStorageBuffers(g.programs.binning, g.buffers.memory.buffer, g.buffers.config)
bindStorageBuffers(g.programs.coarse, g.buffers.memory.buffer, g.buffers.config)
bindStorageBuffers(g.programs.kernel4, g.buffers.memory.buffer, g.buffers.config)
}
func (b *sizedBuffer) release() {
if b.buffer == nil {
return
}
b.buffer.Release()
*b = sizedBuffer{}
}
func (b *sizedBuffer) ensureCapacity(ctx driver.Device, binding driver.BufferBinding, size int) error {
if b.size >= size {
return nil
}
if b.buffer != nil {
b.release()
}
buf, err := ctx.NewBuffer(binding, size)
if err != nil {
return err
}
b.buffer = buf
b.size = size
return nil
}
func bindStorageBuffers(prog driver.Program, buffers ...driver.Buffer) {
for i, buf := range buffers {
prog.SetStorageBuffer(i, buf)
}
}
var bo = binary.LittleEndian
func (e *encoder) reset() {
e.scene = e.scene[:0]
e.npath = 0
e.npathseg = 0
e.ntrans = 0
}
func (e *encoder) numElements() int {
return len(e.scene)
}
func (e *encoder) append(e2 encoder) {
e.scene = append(e.scene, e2.scene...)
e.npath += e2.npath