Pytorch Code of FSA method for Cross-Modality Person Re-Identification (Visible Thermal Re-ID) on RegDB dataset and SYSU-MM01 dataset. *Both of these two datasets may have some fluctuation due to random spliting.
-
(1) RegDB Dataset : The RegDB dataset can be downloaded from this website by submitting a copyright form.
-
(Named: "Dongguk Body-based Person Recognition Database (DBPerson-Recog-DB1)" on their website).
-
A private download link can be requested via sending me an email (mangye16@gmail.com).
-
(2) SYSU-MM01 Dataset : The SYSU-MM01 dataset can be downloaded from this website.
-
run
python pre_process_sysu.py
to pepare the dataset, the training data will be stored in ".npy" format.
Train a model by
python train_ext.py --dataset sysu --lr 0.1 --batch-size 6 --num_pos 4 --fsa_method FSA --lam 0.8 --gpu 0
-
--dataset
: which dataset "sysu" or "regdb". -
--lr
: initial learning rate. -
--gpu
: which gpu to run. -
--fsa_method
: which semantic augmentation method to use.
You may need mannully define the data path first.
Parameters: More parameters can be found in the script.
Sampling Strategy: N (= bacth size) person identities are randomly sampled at each step, then randomly select four visible and four thermal image.
Training Log: The training log will be saved in log/" dataset_name"+ log
. Model will be saved in save_model/
.
Test a model on SYSU-MM01 or RegDB dataset by using testing augmentation with HorizontalFlip
python testa.py --mode all --resume 'model_path' --gpu 0 --dataset sysu
-
--dataset
: which dataset "sysu" or "regdb". -
--mode
: "all" or "indoor" all search or indoor search (only for sysu dataset). -
--trial
: testing trial (only for RegDB dataset). -
--resume
: the saved model path. -
--gpu
: which gpu to run.