Skip to content

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

License

Notifications You must be signed in to change notification settings

da03/fairseq

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cascaded Text Generation with Markov Transformers

click me then scroll down to view animation

Here we provide code to reproduce our results. We provide all training data and training scripts, as well as all pretrained models used in our paper with generation logs. Our code is built on top of fairseq and pytorch-struct.

Prerequisites

pip install -qU git+https://github.com/harvardnlp/pytorch-struct
pip install -qU git+https://github.com/harvardnlp/genbmm
pip install -q matplotlib
pip install -q sacremoses
pip install --editable .

Datasets & Pretrained Models & Logs

We only include IWSLT14 De-En in this repository. Other datasets/models can be found at this link. Data, models, validation and test logs for individual datasets can be found at links below.

Usage

Data Preprocessing

Throughout this Readme, we use IWSLT14 De-En as an example to show how to reproduce our results. First, we need to figure out the mapping from source length to target length. We simply use linear regression here: target_length = max-len-a * source_length + max-len-b, and we need to estimate max-len-a and max-len-b from training data. Note that directly using max-len-a=1 and max-len-b=0 would still reach reasonable performance.

python scripts/get_max_len_ab.py data/iwslt14-de-en/train.de data/iwslt14-de-en/train.en

Then we would figure out max-len-a = 0.941281036889224 and max-len-b = 0.8804326732522796.

Before training our model, we need to preprocess the training data using fairseq-preprocess.

DATASET=iwslt14-de-en
SOURCE_LANG=de
TARGET_LANG=en
TEXT=data/$DATASET
DATA_BIN=data-bin/$DATASET
fairseq-preprocess --source-lang $SOURCE_LANG --target-lang $TARGET_LANG \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir $DATA_BIN \
    --workers 20

Training

DATASET=iwslt14-de-en
DATA_BIN=data-bin/$DATASET
SAVE_DIR=checkpoints/$DATASET
ARCH=transformer_iwslt_de_en
DROPOUT=0.3
MAX_TOKENS=4096
LR=5e-4
WARMUP_UPDATES=4000
MAX_UPDATES=120000
WEIGHT_DECAY=0.0001
MAX_LEN_A=0.941281036889224
MAX_LEN_B=0.8804326732522796
CUDA_VISIBLE_DEVICES=0 fairseq-train $DATA_BIN --arch $ARCH --share-decoder-input-output-embed \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --lr $LR --lr-scheduler inverse_sqrt \
    --warmup-updates $WARMUP_UPDATES --dropout $DROPOUT --weight-decay $WEIGHT_DECAY \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --max-tokens $MAX_TOKENS \
    --eval-bleu --eval-bleu-args '{"max_len_a": '$MAX_LEN_A', "max_len_b": '$MAX_LEN_B'}' \
    --eval-tokenized-bleu --eval-bleu-remove-bpe --eval-bleu-print-samples \
    --best-checkpoint-metric bleu --maximize-best-checkpoint-metric --save-dir $SAVE_DIR \
    --max-update $MAX_UPDATES --validation-max-size 3000 \
    --validation-topk 16 --validation-D 3 --validation-rounds 5 --seed 1234 --ngrams 5

We use a single GPU to train on IWSLT14 De-En. After training is done, we can use checkpoints/iwslt14-de-en/checkpoint_best.pt for generation.

Generation

As an example, let's generate from the above trained model. We use topk = 32 and rounds = 5.

DATASET=iwslt14-de-en
DATA_BIN=data-bin/$DATASET
SAVE_DIR=checkpoints/$DATASET
BATCH_SIZE=1
TOPK=32
rounds=5
MAX_LEN_A=0.941281036889224
MAX_LEN_B=0.8804326732522796
CUDA_VISIBLE_DEVICES=0 fairseq-generate $DATA_BIN --path $SAVE_DIR/checkpoint_best.pt \
    --batch-size $BATCH_SIZE --topk $TOPK --remove-bpe --D 3 --rounds $rounds \
    --max-len-a $MAX_LEN_A --max-len-b $MAX_LEN_B

Note that using a model trained on a different dataset requires re-estimating max-len-a and max-len-b. Also, we provide another version of max-marginal computation using CUDA kernels based on tvm, which might be slightly faster depending on platform. To use it, install tvm first, then add --usetvm to the above command.

Multi-GPU Generation:

Our approach is amenable to multi-GPU parallelization: we can even get further speedup at batch size 1 using multiple GPUs.

NGPUS=3
DATASET=iwslt14-de-en
DATA_BIN=data-bin/$DATASET
SAVE_DIR=checkpoints/$DATASET
TOPK=32
rounds=5
MAX_LEN_A=0.941281036889224
MAX_LEN_B=0.8804326732522796
CUDA_VISIBLE_DEVICES=0,1,2 fairseq-generate $DATA_BIN --path $SAVE_DIR/checkpoint_best.pt \
    --batch-size 1 --topk $TOPK --remove-bpe --D 3 --rounds $rounds --ngpus $NGPUS \
    --max-len-a $MAX_LEN_A --max-len-b $MAX_LEN_B

Visualizations

More visualizations can be found at analysis/visualizations. To draw these plots (Figure 1, Figure 4 and Figure 5 in the paper), we need more dependencies.

pip install -qU git+https://github.com/da03/matplotlib.git
pip install -q mplot3d-dragger
pip install -q tqdm
apt install imagemagick

In particular, we need to use a slightly modified version of matplotlib to remove the hard-coded padding for axes.

First, we need to dump the data for visualization purposes by running the generation command with --dump-vis-path dump_vis_path (here we use 10 examples from IWSLT14 De-En validation set and topk=10):

DATASET=iwslt14-de-en
DATA_BIN=data-bin/$DATASET
SAVE_DIR=checkpoints/$DATASET
BATCH_SIZE=1
TOPK=10
rounds=5
MAX_LEN_A=0.941281036889224
MAX_LEN_B=0.8804326732522796
CUDA_VISIBLE_DEVICES=0 fairseq-generate $DATA_BIN --path $SAVE_DIR/checkpoint_best.pt \
    --batch-size $BATCH_SIZE --topk $TOPK --remove-bpe --D 3 --rounds $rounds \
    --max-len-a $MAX_LEN_A --max-len-b $MAX_LEN_B \
    --gen-subset valid --max-size 10 --seed 1234 --dump-vis-path analysis/data/dump_iwslt14_de_en_val_max10_topk10.pt

Next, we can use the following command to generate the images and animations:

python analysis/plots/visualize_3d.py --dump-vis-path analysis/data/dump_iwslt14_de_en_val_max10_topk10.pt --output-dir analysis/visualizations

We can also use the below command to print out constraint sets during decoding:

python analysis/plots/print_constraints.py --dump-vis-path analysis/data/dump_iwslt14_de_en_val_max10_topk10.pt --output-dir analysis/visualizations

Training on Other Datasets

WMT14 (raw/distilled) En-De/De-En

For preprocessing, we need to use joined dictionary.

DATASET=? # dataset dependent
SOURCE_LANG=? # dataset dependent
TARGET_LANG=? # dataset dependent
TEXT=data/$DATASET
DATA_BIN=data-bin/$DATASET
fairseq-preprocess \
    --source-lang $SOURCE_LANG --target-lang $TARGET_LANG \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir $DATA_BIN --thresholdtgt 0 --thresholdsrc 0 \
    --workers 20 --joined-dictionary

We train on 3 GPUs.

DATASET=? # dataset dependent
MAX_LEN_A=? # dataset dependent
MAX_LEN_B=? # dataset dependent
DATA_BIN=data-bin/$DATASET
SAVE_DIR=checkpoints/$DATASET
ARCH=transformer_wmt_en_de
DROPOUT=0.1
MAX_TOKENS=4096
LR=7e-4
WARMUP_UPDATES=4000
MAX_UPDATES=240000
WEIGHT_DECAY=0.0
CUDA_VISIBLE_DEVICES=0,1,2 python train.py $DATA_BIN --arch $ARCH --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 \
    --warmup-updates 4000 --lr $LR --min-lr 1e-09 --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --weight-decay $WEIGHT_DECAY --max-tokens $MAX_TOKENS --save-dir $SAVE_DIR --update-freq 3 \
    --no-progress-bar --log-format json --log-interval 50 --save-interval-updates 1000 --dropout $DROPOUT\
    --fp16 --ddp-backend=no_c10d --eval-bleu --eval-bleu-args '{"max_len_a": '$MAX_LEN_A', "max_len_b": '$MAX_LEN_B'}'\
    --eval-tokenized-bleu --eval-bleu-remove-bpe --eval-bleu-print-samples  --best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
    --max-update $MAX_UPDATES  --validation-max-size 3000 --validation-topk 16 --validation-D 3 --validation-rounds 5 --seed 1234

WMT16 (raw/distilled) En-Ro/Ro-En

For preprocessing, we need to use joined dictionary.

DATASET=? # dataset dependent
SOURCE_LANG=? # dataset dependent
TARGET_LANG=? # dataset dependent
TEXT=data/$DATASET
DATA_BIN=data-bin/$DATASET
fairseq-preprocess \
    --source-lang $SOURCE_LANG --target-lang $TARGET_LANG \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir $DATA_BIN --thresholdtgt 0 --thresholdsrc 0 \
    --workers 20 --joined-dictionary

We train on 3 GPUs.

DATASET=? # dataset dependent
MAX_LEN_A=? # dataset dependent
MAX_LEN_B=? # dataset dependent
DATA_BIN=data-bin/$DATASET
SAVE_DIR=checkpoints/$DATASET
ARCH=transformer_wmt_en_de
DROPOUT=0.3
MAX_TOKENS=5461
LR=7e-4
WARMUP_UPDATES=10000
MAX_UPDATES=120000
WEIGHT_DECAY=0.01
CUDA_VISIBLE_DEVICES=0,1,2 python train.py $DATA_BIN --arch $ARCH --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 \
    --warmup-updates $WARMUP_UPDATES --lr $LR --min-lr 1e-09 --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --weight-decay $WEIGHT_DECAY --max-tokens $MAX_TOKENS --save-dir $SAVE_DIR --update-freq 1 \
    --no-progress-bar --log-format json --log-interval 50 --save-interval-updates 1000 --dropout $DROPOUT\
    --fp16 --ddp-backend=no_c10d --eval-bleu --eval-bleu-args '{"max_len_a": '$MAX_LEN_A', "max_len_b": '$MAX_LEN_B'}'\
    --eval-tokenized-bleu --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
    --max-update $MAX_UPDATES --validation-max-size 3000 --validation-topk 16 --validation-D 3 --validation-rounds 5 --seed 1234

Acknowledgements

Our code is built on top of fairseq and pytorch-strcut.

About

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 88.0%
  • Shell 7.0%
  • Cuda 3.0%
  • Other 2.0%