Skip to content

da2so/efficientnetv2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EfficientNetV2

PaperPaper TutorialTutorial In Colab TF-hubTF-Hub In Colab

  • Jul19/2021: A list of updates
    • Added TF2 script here.
    • Updated ImageNet21k sigmoid-loss checkpoints, for multi-class pseudo labeling.
    • Add EfficientNetV2-XL 21k and 1k checkpoint and hub modules.
    • Added Nvidia TensorRT script here.
  • May13/2021: Initial code release for EfficientNetV2 models: accepted to ICML'21.

1. About EfficientNetV2 Models

EfficientNetV2 are a family of image classification models, which achieve better parameter efficiency and faster training speed than prior arts. Built upon EfficientNetV1, our EfficientNetV2 models use neural architecture search (NAS) to jointly optimize model size and training speed, and are scaled up in a way for faster training and inference speed.

Here are the comparison on parameters and flops:

2. Pretrained EfficientNetV2 Checkpoints

We have provided a list of results and checkpoints as follows:

ImageNet1K Top1 Acc. Params FLOPs Inference Latency links
EffNetV2-S 83.9% 21.5M 8.4B V100/A100 ckpt, tensorboard
EffNetV2-M 85.2% 54.1M 24.7B V100/A100 ckpt, tensorboard
EffNetV2-L 85.7% 119.5M 56.3B V100/A100 ckpt, tensorboard

** Thanks NVIDIA for providing the inference latency: full TensorRT scripts and instructions are available here: link

Here are a list of ImageNet21K pretrained and finetuned models:

ImageNet21K Pretrained models Finetuned ImageNet1K
EffNetV2-S pretrain ckpt top1=84.9%, ckpt, tensorboard
EffNetV2-M pretrain ckpt top1=86.2%, ckpt, tensorboard
EffNetV2-L pretrain ckpt top1=86.9%, ckpt, tensorboard
EffNetV2-XL pretrain ckpt top1=87.2%, ckpt, tensorboard

For comparison with EfficientNetV1, we have also provided a few smaller V2 models using the same scaling and preprocessing as V1:

ImageNet1K Top1 Acc. Params FLOPs links
EffNetV2-B0 78.7% 7.1M 0.72B ckpt, tensorboard
EffNetV2-B1 79.8% 8.1M 1.2B ckpt, tensorboard
EffNetV2-B2 80.5% 10.1M 1.7B ckpt, tensorboard
EffNetV2-B3 82.1% 14.4M 3.0B ckpt, tensorboard

Here are the ImageNet21k checkpoints and finetuned models for B0-B3:

3. Training & Finetuning

Train on ImageNet1k from scratch:

python main.py --mode=train  --model_name=efficientnetv2-s  --dataset_cfg=imagenet --model_dir=$DIR

Train on ImageNet21k from scratch:

python main.py --mode=train  --model_name=efficientnetv2-s  --dataset_cfg=imagenet21k --model_dir=$DIR

Finetune on ImageNet from scratch:

python main.py --mode=train  --model_name=efficientnetv2-s  --dataset_cfg=imagenetFt --model_dir=$DIR --hparam_str="train.ft_init_ckpt=$PRETRAIN_CKPT_PATH"

Finetune on CIFAR10:

python main.py --mode=train  --model_name=efficientnetv2-s  --dataset_cfg=cifar10Ft --model_dir=$DIR --hparam_str="train.ft_init_ckpt=$PRETRAIN_CKPT_PATH"

4. Build a pretrained model and finetuning

You can directly use this code to build a model like this:

mode = tf.keras.models.Sequential([
    tf.keras.layers.InputLayer(input_shape=[224, 224, 3]),
    effnetv2_model.get_model('efficientnetv2-b0', include_top=False),
    tf.keras.layers.Dropout(rate=0.2),
    tf.keras.layers.Dense(4, activation='softmax'),
])

Or you can also load them from tfhub:

hub_url = 'gs://cloud-tpu-checkpoints/efficientnet/v2/hub/efficientnetv2-b0/feature-vector'
model = tf.keras.Sequential([
    tf.keras.layers.InputLayer(input_shape=[224, 224, 3]),
    hub.KerasLayer(hub_url, trainable=do_fine_tuning),
    tf.keras.layers.Dropout(rate=0.2),
    tf.keras.layers.Dense(4, activation='softmax'),
])

5. Inference

python infer.py --model_name=efficientnetv2-m --model_dir=$MODEL_DIR

A simple example to use EfficientNetV2 model:

# build keras model
model = effnetv2_model.EffNetV2Model('efficientnetv2-s')
# run keras model with inputs [batch, heigh, width, channels]
endpoints = model(inputs)
# endpoints[0] is the logits, endpoints[i] is the reduction_level_i

Currently, supported model_name includes: efficientnetv2-s, efficientnetv2-m, efficientnetv2-l, efficientnetv2-b0, efficientnetv2-b1, efficientnetv2-b2, efficientnetv2-b3. We also support all EfficientNetV1 models including: efficientnet-b0/b1/b2/b3/b4/b5/b6/b7/b8/l2

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published