Skip to content
/ EDC Public

[IEEE ICIP'2022] "Enhancing Deformable Convolution based Video Frame Interpolation with Coarse-to-fine 3D CNN", Duolikun Danier, Fan Zhang, David Bull

License

Notifications You must be signed in to change notification settings

danier97/EDC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Enhancing Deformable Convolution based Video Frame Interpolation with Coarse-to-fine 3D CNN

Duolikun Danier, Fan Zhang, David Bull

Project | Paper

Dependencies and Installation

The following packages were used to evaluate the model.

  • python==3.8.8
  • pytorch==1.7.1
  • torchvision==0.8.2
  • cudatoolkit==10.1.243
  • opencv-python==4.5.1.48
  • numpy==1.19.2
  • pillow==8.1.2
  • cupy==9.0.0

Installation with anaconda:

conda create -n edc python=3.8.8
conda activate edc
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
conda install -c conda-forge cupy
pip install opencv-python==4.5.1.48

Model

Paper

Preparing test data

  • Download UCF101 quintuplets from here.
  • Download DAVIS sequences from here.
  • Download VFITex dataset from here.

The dataset folder names should be lower-case and structured as follows.

└──── <data directory>/
    ├──── ucf101/
    |   ├──── 0/
    |   ├──── 1/
    |   ├──── ...
    |   └──── 99/
    ├──── davis90/
    |   ├──── bear/
    |   ├──── bike-packing/
    |   ├──── ...
    |   └──── walking/
    ├──── snufilm/
    |   ├──── test-easy/
    |   ├──── test-medium/
    |   ├──── test-hard/
    |   ├──── test-extreme/
    |   └──── data/
    └──── vfitex/
        ├──── beach02_4K_mitch/
        ├──── bluewater_4K_pexels/
        ├──── ...
        └──── waterfall_4K_pexels/

Downloading the pre-trained model

Download the pre-trained network from here.

Evaluation

python evaluate.py \
--net EDC \
--data_dir <data directory> \
--checkpoint <path to pre-trained model (.pth file)> \
--out_dir eval_results \
--dataset <dataset name>

where <dataset name> should be the same as the class names defined in data/testsets.py, e.g. Snufilm_extreme_quintuplet.

Citation

@misc{danier2022enhancing,
    title={Enhancing Deformable Convolution based Video Frame Interpolation with Coarse-to-fine 3D CNN}, 
    author={Duolikun Danier and Fan Zhang and David Bull},
    year={2022},
    eprint={2202.07731},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Acknowledgement

Lots of code in this repository are adapted/taken from the following repositories:

We would like to thank the authors for sharing their code.

About

[IEEE ICIP'2022] "Enhancing Deformable Convolution based Video Frame Interpolation with Coarse-to-fine 3D CNN", Duolikun Danier, Fan Zhang, David Bull

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages