Skip to content

An implementation of a Computational Graph in C++ for Machine Learning problems

Notifications You must be signed in to change notification settings

dariocazzani/TensorBlob

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TensorBlob

An implementation of a Computational Graph in C++ for Machine Learning problems

Just clone and run, no installations required.

Instructions

Download MNIST dataset

mkdir -p data
wget -t 45 http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz -q --show-progress
wget -t 45 http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz -q --show-progress
echo "Uncompressing..."
gunzip -c train-images-idx3-ubyte.gz > data/train-images-idx3-ubyte
gunzip -c train-labels-idx1-ubyte.gz > data/train-labels-idx1-ubyte
rm train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz

Install Boost

On Mac, install Boost with Homebrew:

brew install boost

Or visit boost.org to download and install.

Build, run tests and execute main

mkdir -p bin
mkdir -p build
make all && bin/main

Results that will be displayed:

    ...
    *********
    Iteration: 201
    Training cost:   1.5912 - Training accuracy:   48.438%
    Validation cost: 1.313 - Validation accuracy: 61.719%

    *********
    Iteration: 301
    Training cost:   1.1929 - Training accuracy:   66.797%
    Validation cost: 1.1285 - Validation accuracy: 67.969%

    *********
    Iteration: 401
    Training cost:   0.92881 - Training accuracy:   73.828%
    Validation cost: 1.1156 - Validation accuracy: 70.312%

    *********
    Iteration: 501
    Training cost:   0.87063 - Training accuracy:   75.391%
    Validation cost: 0.7792 - Validation accuracy: 76.172%
    ...

Build your own Neural Net for MNIST

Refer to the complete example
  • Load data into train and validation Matrices

    ...
    #include "mnist/mnistUtils.h"
    ...
    //INPUTS and LABELS
    Eigen::MatrixXd trainData(TRAIN_SIZE, IMG_SIZE*IMG_SIZE);
    Eigen::MatrixXd validData(VALID_SIZE, IMG_SIZE*IMG_SIZE);
    Eigen::MatrixXd trainLabels(TRAIN_SIZE, NUM_CLASSES);
    Eigen::MatrixXd validLabels(VALID_SIZE, NUM_CLASSES);
    
    getMnistData(trainData, validData, trainLabels, validLabels);
  • Define Variables and PlaceHolders (a.k.a. Input Nodes)

    // VARIABLES
    Eigen::MatrixXd weights1(IMG_SIZE*IMG_SIZE, NUM_HIDDEN);
    Eigen::MatrixXd bias1(1, NUM_HIDDEN);
    Eigen::MatrixXd weights2(NUM_HIDDEN, NUM_CLASSES);
    Eigen::MatrixXd bias2(1, NUM_CLASSES);
    
    // DEFINE NODES
    Variable W1(weights1);
    Variable b1(bias1);
    Variable W2(weights2);
    Variable b2(bias2);
    Input X;
    Input Y;
  • Initialize Trainable Variables with random values

    vector<Node *> trainables = {&W1, &b1, &W2, &b2};
    initTrainables(trainables);
  • Build Graph

    Linear hidden1(&X, &W1, &b1);
    Sigmoid outHidden1(&hidden1);
    Linear out(&outHidden1, &W2, &b2);
    SoftXent cost(&out, &Y);
    
    vector<Node *> graph = {&hidden1, &W1, &b1, &W2, &b2, &X, &outHidden1, &out, &Y, &cost};
    buildGraph(graph);
  • Example of forward pass, backward pass and SGD update

    //Define a std::map object to feed values to the Network Inputs
    map<Node*, Eigen::MatrixXd> inputMap;
    
    getBatch(trainData, trainLabels, trainDataBatch, trainLabelBatch);
    inputMap[&X] = trainDataBatch;
    inputMap[&Y] = trainLabelBatch;
    feedValues(inputMap);
    forwardBackward(graph);
    SGD(trainables, LEARNING_RATE);
    trainCost = cost.getValues();
    trainAccuracy = getAccuracy(argMax(trainLabelBatch), argMax(cost.getProbabilities()));

TODO

  • Make test for SGD
  • Make path to mnist independent from where main is called from
  • Implement Early stopping
  • Implement Adam Optimizer
  • Implement ReLU Node

About

An implementation of a Computational Graph in C++ for Machine Learning problems

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages