Text generation model for generating suitable style cues given the main idea for a prompt.
Play with it on HuggingFace Space.
Tokenizer and Model on HuggingFace Hub.
from transformers import pipeline
text_pipe = pipeline('text-generation', model='daspartho/prompt-extend')
prompt = "peaceful village landscape"
extended_prompt = text_pipe(prompt, num_return_sequences=1)[0]["generated_text"]
print(extended_prompt)
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("daspartho/prompt-extend")
model = AutoModelForCausalLM.from_pretrained("daspartho/prompt-extend")
- dataset.ipynb: Creating a subset dataset of diffusiondb consisting of just unique prompts.
- tokenizer.ipynb: Training a new tokenizer on the dataset of stable diffusion prompts.
- model.ipynb: Training a GPT-2 model on the dataset of stable diffusion prompts using the trained tokenizer.
- inference.ipynb: Trying the prompts generated using the trained model with stable diffusion.
- app.ipynb: Gradio app for the model.
If you want to contribute code, simply create a pull request. If you have an idea, create an issue and the developers will look into it!