The repo contains the training code for paper Distributed Adversarial Training to Robustify Deep Neural Networks at Scale. Source code is adapted from:
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle
Train with Imagenet with DAT-PGD :
python main.py --dataset imagenet \
--batch-size <BATCH SIZE> \
--world-size <NUMBER OF NODES> \
--rank <RANK> \
--dist-url "tcp://<MASTER IP>:<PORT>" \
--dataset-path <PATH TO IMAGENET>\
--num-epochs 30 \
--output-dir <OUTPUT DIR> \
--lr 0.01
Train with Imagenet with DAT-FGSM :
python main.py --dataset imagenet \
--batch-size <BATCH SIZE> \
--world-size <NUMBER OF NODES> \
--rank <RANK> \
--dist-url "tcp://<MASTER IP>:<PORT>" \
--dataset-path <PATH TO IMAGENET>\
--num-epochs 30 \
--output-dir <OUTPUT DIR> \
--lr 0.01 \
--fast
Our pretrianed Imagenet models are under here.