-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcal500_exp.py
241 lines (201 loc) · 7.35 KB
/
cal500_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <codecell>
import glob, operator
import numpy as np
import glad_em
# <codecell>
%cd cal500/annotations_usr/
files = glob.glob('*.mp3.txt')
%cd ../../
# <codecell>
prefix = 'cal500/annotations_usr/'
annotator2song, annotator2id = {}, {}
song2annotator, song2id = {}, {}
annotator_count, song_count = 0, 0
for f in files:
tmp = f.strip().split('-', 1)
if tmp[0] not in annotator2song.keys():
annotator2song[tmp[0]] = [tmp[1]]
annotator2id[tmp[0]] = annotator_count
annotator_count += 1
else:
annotator2song[tmp[0]].append(tmp[1])
if tmp[1] not in song2annotator.keys():
song2annotator[tmp[1]] = [tmp[0]]
song2id[tmp[1]] = song_count
song_count += 1
else:
song2annotator[tmp[1]].append(tmp[0])
# <codecell>
song_per_annotator = [len(songs) for songs in annotator2song.values()]
annotator_per_song = [len(annotators) for annotators in song2annotator.values()]
# <codecell>
figure()
hist(song_per_annotator, bins=50)
figure()
hist(annotator_per_song, bins=15)
pass
# <codecell>
def extract_label(label, values_p, values_n=None):
if values_n is None:
Labels = np.zeros((annotator_count, song_count))
else:
Labels = -np.ones((annotator_count, song_count))
for f in files:
annotator, song = f.strip().split('-', 1)
data = np.loadtxt(prefix + f, dtype='str', delimiter=' = ', skiprows=3)
for (k, v) in data:
if k == label:
v = v.lower()
if v in values_p:
Labels[annotator2id[annotator], song2id[song]] = 1
elif values_n is not None and v in values_n:
Labels[annotator2id[annotator], song2id[song]] = 0
break
return Labels
def show_values(label):
values = []
for f in files:
data = np.loadtxt(prefix + f, dtype='str', delimiter=' = ', skiprows=3)
for (k, v) in data:
if k == label:
v = v.lower()
if v not in values:
values.append(v)
break
return values
def output_info(aver_acc):
best = -inf
worst = inf
none = inf
for (k, v) in aver_acc.items():
if best < v:
best = v
blabel = k
if worst > v:
worst = v
wlabel= k
if none > abs(v):
none = v
nlabel = k
print 'Best: {}: {}'.format(blabel, best)
print 'Worst: {}: {}'.format(wlabel, worst)
print 'None: {}: {}'.format(nlabel, none)
pass
# <codecell>
id2song = {}
for (k, v) in song2id.items():
id2song[v] = k
id2annotator = {}
for (k, v) in annotator2id.items():
id2annotator[v] = k
# <codecell>
label = 'Genre-Blues'
show_values(label)
# <codecell>
## Instrument level
missing = True
inst_aver_acc = {}
for label in labels:
if label.startswith('Instrument') and not label.endswith('Solo'):
Labels = extract_label(label, ['"present"', '"prominent"'], values_n=['"none"'])
if sum(Labels == -1) == Labels.size:
print '{} has no annotation'.format(label)
continue
glad = glad_em.GLAD(Labels)
maxiter = 10
threshold = 0.001
old_obj = -np.inf
for i in xrange(maxiter):
glad.e_step()
glad.m_step(missing=missing)
improvement = (glad.obj - old_obj) / abs(glad.obj)
print 'After ITERATION: {}\tObjective: {:.2f}\tOld objective: {:.2f}\tImprovement: {:.4f}'.format(i, glad.obj, old_obj, improvement)
if improvement < threshold:
break
old_obj = glad.obj
print 'For label {}:'.format(label)
print '\tAverage user accuracy is {}'.format(mean(glad.alpha))
print '\tThe most expert user is {}'.format(id2annotator[argmax(glad.alpha)])
print '\tThe lest expert user is {}'.format(id2annotator[argmin(glad.alpha)])
print '\tThe hardest song is {}, the easiest song is {}'.format(id2song[argmin(glad.beta)], id2song[argmax(glad.beta)])
print
inst_aver_acc[label] = mean(glad.alpha)
output_info(inst_aver_acc)
sorted_inst = sorted(inst_aver_acc.iteritems(), key=operator.itemgetter(1))
# <codecell>
sorted_inst
# <codecell>
## solo
missing = False
solo_aver_acc = {}
for label in labels:
if label.startswith('Instrument') and label.endswith('Solo'):
Labels = extract_label(label, ['"yes"'])
if sum(Labels == -1) == Labels.size:
print '{} has no annotation'.format(label)
continue
glad = glad_em.GLAD(Labels)
maxiter = 10
threshold = 0.001
old_obj = -np.inf
for i in xrange(maxiter):
glad.e_step()
glad.m_step(missing=missing)
improvement = (glad.obj - old_obj) / abs(glad.obj)
print 'After ITERATION: {}\tObjective: {:.2f}\tOld objective: {:.2f}\tImprovement: {:.4f}'.format(i, glad.obj, old_obj, improvement)
if improvement < threshold:
break
old_obj = glad.obj
print 'For label {}:'.format(label)
print '\tAverage user accuracy is {}'.format(mean(glad.alpha))
print '\tThe most expert user is {}'.format(id2annotator[argmax(glad.alpha)])
print '\tThe lest expert user is {}'.format(id2annotator[argmin(glad.alpha)])
print '\tThe hardest song is {}, the easiest song is {}'.format(id2song[argmin(glad.beta)], id2song[argmax(glad.beta)])
print
solo_aver_acc[label] = mean(glad.alpha)
output_info(solo_aver_acc)
sorted_solo = sorted(solo_aver_acc.iteritems(), key=operator.itemgetter(1))
# <codecell>
sorted_solo
# <codecell>
bins = numpy.linspace(-2, 12, 50)
hist(solo_aver_acc.values(), bins, alpha=0.5)
hist(inst_aver_acc.values(), bins, alpha=0.5)
legend(["Solo", "Instrument"])
savefig('comp.png')
pass
# <codecell>
## Genre
missing = False
#genre_aver_acc = {}
for label in labels:
if label.startswith('Genre') and not label.startswith('Genre-Best') and not label.startswith('Genre--_'):
Labels = extract_label(label, ['"yes"'])
if sum(Labels == -1) == Labels.size:
print '{} has no annotation'.format(label)
continue
glad = glad_em.GLAD(Labels)
maxiter = 10
threshold = 0.001
old_obj = -np.inf
for i in xrange(maxiter):
glad.e_step()
glad.m_step(missing=missing)
improvement = (glad.obj - old_obj) / abs(glad.obj)
print 'After ITERATION: {}\tObjective: {:.2f}\tOld objective: {:.2f}\tImprovement: {:.4f}'.format(i, glad.obj, old_obj, improvement)
if improvement < threshold:
break
old_obj = glad.obj
print 'For label {}:'.format(label)
print '\tAverage user accuracy is {}'.format(mean(glad.alpha))
print '\tThe most expert user is {}'.format(id2annotator[argmax(glad.alpha)])
print '\tThe lest expert user is {}'.format(id2annotator[argmin(glad.alpha)])
print '\tThe hardest song is {}, the easiest song is {}'.format(id2song[argmin(glad.beta)], id2song[argmax(glad.beta)])
print
genre_aver_acc[label] = mean(glad.alpha)
output_info(genre_aver_acc)
sorted_genre = sorted(genre_aver_acc.iteritems(), key=operator.itemgetter(1))
# <codecell>
sorted_genre